ACSC/STAT 3720, Life Contingencies I WINTER 2015

Toby Kenney Sample Final Examination

This Sample examination has more questions than the actual final, in order to cover a wider range of questions. Estimated times are provided after each question to help your preparation. Assume lives are in the ultimate part of the model unless otherwise specified, and policies are annual unless otherwise specified. All questions use Table 1 unless otherwise specified. Values of A_x for this lifetable have been calculated and are in Table 2.

- 1. For a life aged 32, for whom Table 1 is appropriate, an insurance company provides a whole life insurance policy with annual premiums \$3,803 and death benefits of \$600,000. The interest rate is i = 0.03. What is the probability that the policy makes a profit? [10 mins]
- 2. An insurance company sells a 15-year endowment policy to a life aged 47. The policyholder can afford annual premiums of \$1,400. The interest rate is i=0.04. Calculate the death benefit that matches this premium under the equivalence principle. $[A_{47:\overline{15}|}=0.558772.]$ [5 mins]
- 3. An insurance company sells a 10-year term insurance policy to a life aged 51. The death benefit is \$750,000. Calculate the net premium using the equivalence principle at an interest rate i=0.06. You are given $A^1_{51:\overline{10}|}=0.0128582$. [10 mins]
- 4. An insurance company sells a whole-life insurance policy to a life aged 39. The interest rate is i=0.05. The death benefit is \$350,000, and premiums are payable in advance until age 80. Calculate the annual net premium using the equivalence principle. [You calculate that $A_{39}=0.0905389$ and $A_{80}=0.457434$.] [10 mins]
- 5. An insurance company sells a deferred annuity to a life aged 45. The interest rate is i = 0.05. The policy pays an annual annuity of \$40,000, starting at age 65. It is purchased with annual premiums from age 45 to age 65. Calculate the net annual premiums required. [10 mins]
- 6. An insurance company sells a 10-year term insurance policy to a life aged 42. The interest rate is i = 0.06. The death benefit is \$200,000. Initial expenses are \$200 plus 40% of the first premium. Renewal expenses are 2% of each subsequent premium. Calculate the annual premiums using the equivalence principle. [15 mins]
- 7. An insurance company sells a deferred annuity to a life aged 33. The interest rate is i=0.04 and the annual annuity payment is \$82,000, starting from age 65. The annuity is purchased with annual premiums until age 65. The initial expenses are \$600 plus 50% of the first premium, and renewal expenses are 2% of each premium during the deferred period, and \$123 each year while the annuity is being payed. Calculate the premium using the equivalence principle. [10 mins]
- 8. An insurance company issues a whole life insurance policy to a life aged 43. The interest rate is i = 0.03, and the death benefit is \$380,000. Net monthly premiums are payable until death. Calculate the monthly premium using

- (a) The Uniform Distribution of Deaths assumption. [10 mins]
- (b) Woolhouse's formula. [10 mins]
- 9. An insurance company issues a 10-year endowment policy to a life aged 53. The interest rate is i = 0.04, and the benefit is \$220,000. Calculate the net monthly premium using
 - (a) The Uniform Distribution of Deaths assumption. [10 mins]
 - (b) Woolhouse's formula. [10 mins]
- 10. An insurance company sells 5000 whole-life insurance policies to lives aged 49. The interest rate is i=0.03. The policies have a death benefit of \$700,000. Use the portfolio percentile premium principle to calculate the net annual premium for these policies. [You may use a normal approximation for aggregate losses. $^2A_{49}=0.099137$.] [30 mins]
- 11. An insurance company sells 3000 whole-life insurance policies to lives aged 55. The interest rate is i = 0.05. The policies have a death benefit of \$200,000. Use the portfolio percentile premium principle to calculate the net annual premium for these policies. [You may use a normal approximation for aggregate losses. ${}^{2}A_{55} = 0.0520745$.] [30 mins]
- 12. An insurance company sells 4000 10-year term insurance policies to lives aged 38. The interest rate is i=0.05. The policies have a death benefit of \$100,000. Use the portfolio percentile premium principle to calculate the net annual premium for these policies. [You may use a normal approximation for aggregate losses. ${}^2A_{38:\overline{10}|} = 0.378046$.] [30 mins]
- 13. An insurance company sells a 10-year term insurance policy to a life aged 42. The interest rate is i = 0.04. The life enjoys a number of dangerous hobbies, and so has mortality rate increased by 0.009569451. The death benefit of this policy is \$350,000. Calculate the net annual premium for this policy. [10 mins]
- 14. An insurance company sells a 15-year endowment policy to a life aged 47. The death benefit is \$240,000. The interest rate is i = 0.04. The net annual premium is \$11,689.86. Calculate the net policy value of this policy after 4 years, using a basis with interest rate i = 0.03. [15 mins]
- 15. An insurance company sells a whole-life insurance policy to a life aged 39. The interest rate is i=0.05. The death benefit is \$350,000, and premiums are payable in advance until age 80. The annual net premium is therefore \$1,780.71. Calculate the policy value after 14 years, using the same policy value basis as the premium basis. [10 mins]
- 16. An insurance company sells a deferred annuity to a life aged 33. The interest rate is i=0.04 and the annual annuity payment is \$82,000, starting from age 65. The annuity is purchased with annual premiums of \$21,870.68 until age 65. The initial expenses are \$600 plus 50% of the first premium, and renewal expenses are 2% of each premium during the deferred period, and \$123 each year while the annuity is being payed. Calculate the policy value after 7 years using the same basis as the premium basis. [10 mins]
- 17. An insurance company sells 1000 10-year term insurance policies to lives aged 42. The interest rate is i = 0.06. The death benefit is \$200,000. Initial expenses are \$200 plus 40% of the first premium. Renewal expenses are 2% of each subsequent premium. The gross annual premium is calculated as \$190.97. In the first 3 years of the policy:

- The interest rate is i = 0.07 in the first year of the policy; i = 0.05 in the second year of the policy; i = 0.08 in the third and fourth years of the policy; and i = 0.06 in the fifth year.
- One policyholder dies in the first year. One policyholder dies in the third year. No other policyholders die.
- The total initial expenses for the policies are \$240,000.
- The total renewal expenses for the policies are calculated as \$2,600 at the start of each of years 2, 3, 4 and 5.

Calculate the total profit on these policies at the end of the first 3 years, and divide the profit between interest, mortality and expenses. [15 mins]

- 18. An insurance company sells 1000 10-year term insurance policies to lives aged 42. The interest rate is i = 0.06. The death benefit is \$200,000. Initial expenses are \$200 plus 40% of the first premium. Renewal expenses are 2% of each subsequent premium. The gross annual premium is calculated as \$190.97. In the first 3 years of the policy:
 - The interest rate is i = 0.07 in the first year of the policy; i = 0.07 in the second year of the policy; i = 0.05 in the third year of the policy;
 - One policyholder dies in the second year. No policyholders die in the first or third years.
 - The total initial expenses for the policies are \$260,000.
 - The total renewal expenses for the policies are calculated as \$2,200 at the start of each of years 2 and 3.

Calculate the asset share of the remaining policies at the end of the first 3 years. [15 mins]

- 19. An insurance company issues a whole life insurance policy to a life aged 43. The interest rate is i = 0.03, and the death benefit is \$380,000. Net monthly premiums are payable until death. Using Woolhouse's formula, you calculate the monthly premium is \$306.38.
 - (a) Calculate the policy value after 8 years 4 months. [10 mins]
 - (b) Calculate the policy value after 8 years 3.4 months. [10 mins]
- 20. An insurance company issues a 10-year endowment policy to a life aged 53. The interest rate is i = 0.04, and the benefit is \$220,000. Using the Uniform Distribution of Deaths assumption, you calculate the net monthly premium is \$1,600.57.
 - (a) Calculate the policy value after 4 years 7 months. [10 mins]
 - (b) Calculate the policy value after 4 years 6.8 months. [10 mins]
- 21. An insurance company wants to design a policy with continuous premiums so that the policy value is given by $_tV = 100t(t-8)(t-15)$. The death benefits are \$200,000. The policy is sold to a life aged 46, with mortality given by $\mu_x = 0.0000012(1.097)^x$. Calculate the premiums as a function of time if force of interest is $\delta = 0.024$. [10 mins]

- 22. An insurance company sells a 10-year endowment insurance policy with continuous premiums at a rate of \$1700 per year. The benefits are \$200,000. The policy is sold to a life aged 46, with mortality given by $\mu_x = 0.0000012(1.097)^x$. The company finds that the policy value is given by $_tV = 200000\frac{(1-e^{-0.03t})}{1-e^{-0.3}}$. What force of interest are they using (as a function of time)? [10 mins]
- 23. An insurance company offers a 10-year term policy with death benefit \$600,000 payable at the end of the year of death. If the interest rate is i=0.05. For a select individual aged 36, the annual premium for this policy is \$264.88. The policy pays a cash surrender value of 85% of the policy value. After 4 years, the policyholder wants to reduce the annual premiums to \$100 for the remainder of the policy. Calculate the new death benefits for the policy. [10 mins]
- 24. An insurance company sells a whole-life insurance policy to a life aged 44. The policy has a death benefit of \$250,000. The interest rate is i = 0.06. The annual premium for this policy is \$1,216.05. The policy has a cash surrender value of 80% of the policy value. After 8 years, the man asks to change the terms of the policy so that he pays no premiums for the next two years, but pays increased premiums after that time, so that the benefits for the policy remain the same. Is this change permissable, and if so, what should the new premiums be after the two year break? [10 mins]
- 25. An insurance company offers a 20-year endowment insurance policy with benefit \$400,000 to a life aged 45. The interest rate is i = 0.04. The annual premium for this policy is \$13,208.28. The policy pays a cash surrender value of 90% of the policy value. After 12 years, the policyholder wants to change the policy to a whole-life insurance policy with the same premiums and an increased death benefit. Calculate the new death benefit. [10 mins]
- 26. An insurance company sells a whole-life insurance policy to a life aged 44. The policy has a death benefit of \$450,000. The interest rate is i=0.07. The annual premium for this policy is \$1,779.91. The policy has a cash surrender value of 85% of the policy value. After 11 years, the woman asks to convert the policy to a paid-up term policy with the same death benefits. Calculate the term of the policy after this modification. [15 mins]
 - (i) 13 years
 - (ii) 22 years
 - (iii) 26 years
 - (iv) 31 years
- 27. An insurance company offers a whole-life insurance policy with annual premiums, in which the death benefits for a given year are equal to \$100,000 plus the policy value at the start of the year. The annual premiums for this policy are \$881.11. Calculate the policy value after 3 years. [15 mins]
- 28. An insurance company sells a 15-year term insurance policy to a life aged 29. The death benefit is \$180,000 in the first two years, \$160,000 in the second to fifth year and \$140,000 for the remaining 10 years. The premiums are \$96.85 for the first three years, and \$26.64 for the remaining twelve years. The interest rate is i = 0.05 for the first 4 years, and i = 0.07 for the remaining 11 years. Calculate the retrospective policy value after 2 years. [10 mins]

- 29. A man aged 42 buys a whole-life insurance policy with a death benefit of \$400,000. The interest rate is i=0.06. The annual premium for this policy is therefore \$1741.31. Using a full preliminary term of 1 year, calculate the policy value of this policy after 4 years. [10 mins]
- 30. A man aged 34 buys a 25-year endowment insurance policy with a benefit of \$500,000. The interest rate is i=0.05. The annual premium for this policy is therefore \$10,162.60. Using a full preliminary term of 2 years, calculate the policy value of this policy after 13 years. [10 mins]

Table 1: Select lifetable to be used for questions on this practice final

\overline{x}	$l_{[x]}$	$l_{[x]+1}$	$l_{[x]+2}$	$l_{[x]+3}$		\overline{x}	$l_{[x]}$	$l_{[x]+1}$	$l_{[x]+2}$	$l_{[x]+3}$
25	9998.75	9997.65	9996.30	9994.66		74	8987.73	8932.10	8862.49	8775.52
26	9997.00	9995.83	9994.40	9992.66		75	8897.04	8836.71	8761.27	8667.10
27	9995.14	9993.90	9992.38	9990.52		76	8798.69	8733.34	8651.66	8549.78
28	9993.16	9991.84	9990.22	9988.24		77	8692.13	8621.41	8533.09	8423.00
29	9991.05	9989.65	9987.92	9985.80		78	8576.81	8500.36	8404.95	8286.16
30	9988.81	9987.30	9985.46	9983.18		79	8452.13	8369.60	8266.68	8138.66
31	9986.40	9984.80	9982.82	9980.38		80	8317.52	8228.53	8117.67	7979.93
32	9983.83	9982.11	9979.99	9977.37		81	8172.36	8076.57	7957.35	7809.41
33	9981.07	9979.23	9976.95	9974.13		82	8016.08	7913.13	7785.15	7626.56
34	9978.11	9976.13	9973.68	9970.64		83	7848.11	7737.67	7600.54	7430.89
35	9974.93	9972.79	9970.16	9966.88		84	7667.89	7549.66	7403.05	7221.99
36	9971.50	9969.20	9966.36	9962.82		85	7474.92	7348.64	7192.27	6999.51
37	9967.80	9965.33	9962.25	9958.44		86	7268.77	7134.21	6967.86	6763.22
38	9963.81	9961.14	9957.82	9953.69		87	7049.07	6906.07	6729.62	6513.04
39	9959.50	9956.61	9953.02	9948.55		88	6815.55	6664.05	6477.46	6249.02
40	9954.84	9951.71	9947.82	9942.98		89	6568.09	6408.10	6211.48	5971.42
41	9949.79	9946.41	9942.19	9936.94		90	6306.70	6138.35	5931.96	5680.73
42	9944.32	9940.66	9936.08	9930.38		91	6031.59	5855.15	5639.41	5377.67
43	9938.39	9934.41	9929.45	9923.26		92	5743.19	5559.08	5334.61	5063.27
44	9931.96	9927.64	9922.25	9915.52		93	5442.15	5250.97	5018.61	4738.86
45	9924.97	9920.28	9914.42	9907.10		94	5129.44	4931.97	4692.79	4406.12
46	9917.37	9912.28	9905.91	9897.94		95	4806.33	4603.54	4358.89	4067.08
47	9909.11	9903.58	9896.65	9887.98		96	4474.39	4267.51	4018.96	3724.10
48	9900.13	9894.11	9886.57	9877.13		97	4135.60	3926.04	3675.44	3379.91
49	9890.36	9883.80	9875.59	9865.30		98	3792.25	3581.66	3331.11	3037.57
50	9879.71	9872.57	9863.63	9852.42		99	3447.02	3237.23	2989.05	2700.39
51	9868.12	9860.34	9850.59	9838.38		100	3102.90	2895.94	2652.63	2371.88
52	9855.48	9847.01	9836.39	9823.08		101	2763.19	2561.21	2325.37	2055.64
53	9841.72	9832.48	9820.90	9806.39		102	2431.39	2236.61	2010.90	1755.27
54	9826.71	9816.64	9804.02	9788.18		103	2111.15	1925.80	1712.81	1474.18
55	9810.34	9799.37	9785.60	9768.33		104	1806.12	1632.34	1434.48	1215.44
56	9792.49	9780.52	9765.51	9746.67		105	1519.82	1359.55	1178.94	981.65
57	9773.03	9759.97	9743.60	9723.05		106	1255.46	1110.36	948.70	774.71
58	9751.79	9737.56	9719.69	9697.28		107	1015.81	887.14	745.58	595.71
59	9728.63	9713.10	9693.62	9669.17		108	802.96	691.49	570.56	444.87
60	9703.36	9686.43	9665.17	9638.51		109	618.23	524.17	423.71	321.41
61	9675.80	9657.33	9634.15	9605.07		110	462.04	385.00	304.13	223.65
62	9645.73	9625.59	9600.31	9568.61		111	333.80	272.80	210.00	149.10
63	9612.94	9590.98	9563.42	9528.85		112	231.99	185.53	138.71	94.62
64	9577.18	9553.24	9523.19	9485.52		113	154.19	120.34	87.07	56.74
65	9538.19	9512.09	9479.35	9438.30		114	97.30	73.90	51.50	31.84
66	9495.69	9467.25	9431.58	9386.86		115	57.78	42.55	28.41	16.52
67	9449.37	9418.39	9379.54	9330.85		116	31.92	22.69	14.43	7.81
68	9398.90	9365.17	9322.87	9269.88		117	16.15	11.04	6.63	3.30
69	9343.95	9307.23	9261.20	9203.55		118	7.34	4.79	2.69	1.21
70	9284.12	9244.18	9194.11	9131.43		119	2.90	1.79	0.93	0.37
71	9219.03	9175.59	9121.17	9053.07	0	120	0.95	0.55	0.26	0.09
72	9148.24	9101.03	9041.91	8967.97	6		0.23	0.13	0.05	0.01
73	9071.30	9020.03	8955.85	8875.63		122	0.03	0.02	0.01	0.00

Table 2: Values of A_x at various interest rates

x			A_x				x			A_x		
-	i = 0.03	i = 0.04	i = 0.05	i = 0.06	i = 0.07			i = 0.03	i = 0.04	i = 0.05	i = 0.06	i = 0.07
28	.159448	0.0920362	0.0550919	0.0343021	0.0222699		77	.573485	0.485964	0.415648	0.358686	0.31217
29	.164063	0.0955357	0.0576569	0.0361664	0.0236325		78	.585568	0.499215	0.42938	0.372454	0.32569
30	.168807	0.0991642	0.0603386	0.0381304	0.025078		79	.59769	0.512586	0.443314	0.386497	0.339549
31	.173682	0.102926	0.0631417	0.0401992	0.0266113		80	.609835	0.526062	0.457434	0.400802	0.353734
32	.178692	0.106825	0.0660706	0.0423772	0.0282367		81	.621989	0.539625	0.471723	0.415351	0.368232
33	.18384	0.110866	0.0691308	0.0446701	0.0299597		82	.634137	0.553258	0.486163	0.430129	0.383026
34	.189128	0.115052	0.0723272	0.0470831	0.0317853		83	.646262	0.566943	0.500734	0.445115	0.398099
35	.194558	0.119388	0.0756648	0.0496214	0.0337189		84	.658349	0.58066	0.515416	0.460289	0.413432
36	.200135	0.123879	0.079149	0.052291	0.0357661		85	.670382	0.594389	0.530187	0.475628	0.429002
37	.205862	0.12853	0.0827855	0.0550978	0.0379331		86	.682343	0.60811	0.545023	0.49111	0.444788
38	.21174	0.133344	0.0865803	0.0580484	0.0402265		87	.694217	0.621802	0.559901	0.506708	0.460763
39	.217774	0.138327	0.0905389	0.0611489	0.0426523		88	.705986	0.635444	0.574798	0.522398	0.476902
40	.223965	0.143482	0.0946669	0.0644056	0.0452173		89	.717634	0.649013	0.589687	0.538151	0.493176
41	.230317	0.148816	0.0989705	0.0678253	0.0479284		90	.729143	0.662489	0.604543	0.55394	0.509557
42	.236832	0.154332	0.103456	0.0714153	0.0507932		91	.740498	0.675848	0.619339	0.569735	0.526011
43	.243514	0.160035	0.108129	0.0751824	0.053819		92	.751682	0.68907	0.634049	0.585506	0.542509
44	.250364	0.165929	0.112997	0.079134	0.0570135		93	.76268	0.702132	0.648647	0.601223	0.559017
45	.257384	0.17202	0.118065	0.0832768	0.0603841		94	.773475	0.715013	0.663107	0.616856	0.575501
46	.264579	0.178312	0.123339	0.0876193	0.0639399		95	.784054	0.727694	0.677402	0.632374	0.591929
47	.271948	0.184808	0.128827	0.0921683	0.0676885		96	.794403	0.740153	0.691506	0.647747	0.608265
48	.279495	0.191514	0.134533	0.0969315	0.0716383		97	.804509	0.752371	0.705396	0.662946	0.624476
49	.287221	0.198434	0.140465	0.101917	0.0757985		98	.814359	0.764332	0.719046	0.67794	0.640528
50	.295128	0.205571	0.14663	0.107134	0.0801788		99	.823943	0.776016	0.732435	0.692702	0.656388
51	.303217	0.212931	0.153032	0.112588	0.0847871		100	0.83325	0.787409	0.745539	0.707204	0.672024
52	.311489	0.220514	0.159677	0.118287	0.0896318		101	0.842272	0.798496	0.758339	0.72142	0.687404
53	.319946	0.228327	0.166573	0.124241	0.0947241		102	0.851	0.809264	0.770816	0.735325	0.702499
54	.328587	0.236372	0.173724	0.130456	0.100072		103	0.85943	0.8197	0.782952	0.748897	0.71728
55	.337414	0.244652	0.181136	0.136941	0.105686		104	0.867554	0.829795	0.794732	0.762114	0.73172
56	.346426	0.253169	0.188814	0.143702	0.111574		105	0.875369	0.83954	0.806142	0.774958	0.745796
57	.355623	0.261926	0.196764	0.150748	0.117747		106	0.882873	0.848929	0.81717	0.787411	0.759486
58	.365004	0.270924	0.20499	0.158086	0.124213		107	0.890065	0.857957	0.827808	0.799459	0.772769
59	.374567	0.280165	0.213496	0.165721	0.130981		108	0.896944	0.866619	0.838046	0.81109	0.785629
60	.384312	0.28965	0.222286	0.173662	0.138061		109	0.903512	0.874915	0.84788	0.822293	0.79805
61	.394236	0.299379	0.231363	0.181913	0.145461		110	0.909771	0.882844	0.857306	0.833061	0.81002
62	.404336	0.309353	0.24073	0.190481	0.153188		111	0.915723	0.890405	0.86632	0.843386	0.821528
63	.41461	0.319569	0.25039	0.199371	0.161252		112	0.921375	0.897605	0.874926	0.853268	0.832569
64	.425054	0.330027	0.260343	0.208588	0.169658		113	0.92673	0.904445	0.883122	0.862704	0.843138
65	.435663	0.340726	0.270592	0.218135	0.178416		114	l .		0.890918		0.853237
66	.446433	0.351661	0.281134	0.228016	0.187529		115	0.936585	0.917079	0.898316	0.880256	0.862864
67	.457358	0.36283	0.291971	0.238233	0.197005		116	0.941093	0.922879	0.905316	0.88837	0.872013
68	.468433	0.374228	0.303101	0.248787	0.206847		117	0.945338	0.928352	0.911935	0.896059	0.880699
69	.47965	0.38585	0.31452	0.259679	0.217059		118	0.949337		0.918198	0.903348	0.88895
70	.491002	0.39769	0.326225	0.27091	0.227644		119	0.953079	0.938364			0.896728
71	.502481	0.409741	0.338212	0.282476	0.238604		120	0.956622	0.942959	0.929669	0.916736	0.904147
72	.514079	0.421995	0.350475	0.294375	0.249939		121	0.959964		0.934961	0.922928	0.911192
73	.525785	0.434443	0.363008	0.306604	0.261649	_	122		0.951582			0.918163
74	.53759	0.447075	0.375801	0.319157	0.273732	7	123		0.957429	0.947342	0.937463	0.927786
75	.549483	0.459881	0.388846	0.332028	0.286183		124		0.961538	0.952381	0.943396	0.934579
76	.561452	0.472848	0.402132	0.345207	0.298998		125	1	1	1	1	1

Table 3: Values of a_x at various interest rates

x			a_x			x			a_x		
	i = 0.03	i = 0.04	i = 0.05	i = 0.06	i = 0.07	-	i = 0.03	i = 0.04	i = 0.05	i = 0.06	i = 0.07
28	28.858952	23.607059	19.843070	17.060663	14.805627	77	14.643682	13.364936	12.271392	11.329881	10.415711
29	28.700504	23.516072	19.789205	17.027727	14.784994	78	14.228832	13.020410	11.983020	11.086646	10.210980
30	28.537626	23.421731	19.732889	16.993030	14.763105	79	13.812643	12.672764	11.690406	10.838553	10.001115
31	28.370251	23.323924	19.674024	16.956481	14.739886	80	13.395665	12.322388	11.393886	10.585831	9.786314
32	28.198241	23.222550	19.612517	16.918003	14.715273	81	12.978378	11.969750	11.093817	10.328799	9.566773
33	28.021493	23.117484	19.548253	16.877495	14.689182	82	12.561296	11.615292	10.790577	10.067721	9.342749
34	27.839939	23.008648	19.481129	16.834865	14.661537	83	12.145005	11.259482	10.484586	9.802968	9.114501
35	27.653509	22.895912	19.411039	16.790022	14.632257	84	11.730018	10.902840	10.176264	9.534894	8.882315
36	27.462032	22.779146	19.337871	16.742859	14.601256	85	11.316885	10.545886	9.866073	9.263905	8.646541
37	27.265405	22.658220	19.261505	16.693272	14.568442	86	10.906224	10.189140	9.554517	8.990390	8.407496
38	27.063593	22.533056	19.181814	16.641145	14.533713	87	10.498550	9.833148	9.242079	8.714825	8.165589
39	26.856426	22.403498	19.098683	16.586369	14.496979	88	10.094481	9.478456	8.929242	8.437635	7.921198
40	26.643868	22.269468	19.011995	16.528834	14.458138	89	9.694566	9.125662	8.616573	8.159332	7.674763
41	26.425783	22.130784	18.921620	16.468420	14.417084	90	9.299424	8.775286	8.304597	7.880393	7.426708
42	26.202101	21.987368	18.827424	16.404996	14.373703	91	8.909569	8.427952	7.993881	7.601348	7.177548
43	25.972686	21.839090	18.729291	16.338444	14.327884	92	8.525585	8.084180	7.684971	7.322727	6.927721
44	25.737503	21.685846	18.627063	16.268633	14.279510	93	8.147987	7.744568	7.378413	7.045060	6.677743
45	25.496483	21.527480		16.195443	14.228469	94	7.777358	7.409662	7.074753	6.768877	6.428128
46	25.249454	21.363888	18.409881	16.118726	14.174624	95	7.414146	7.079956	6.774558	6.494726	6.179361
47	24.996452	21.194992	18.294633	16.038360	14.117860	96	7.058830	6.756022	6.478374	6.223136	5.931987
48	24.737338	21.020636	18.174807	15.954210	14.058049	97	6.711858	6.438354	6.186684	5.954621	5.686506
49	24.472079	20.840716	18.050235	15.866133	13.995051	98	6.373674	6.127368	5.900034	5.689727	5.443433
50	24.200605	20.655154	17.920770	15.773966	13.928721	99	6.044624	5.823584	5.618865	5.428931	5.203267
51	23.922883	20.463794	17.786328	15.677612	13.858938	100	5.725083	5.527366	5.343681	5.172729	4.966494
52	23.638878	20.266636	17.646783	15.576930	13.785576	101	5.415328	5.239104	5.074881	4.921580	4.733597
53	23.348521	20.063498	17.501967	15.471742	13.708464	102	5.115667	4.959136	4.812864	4.675925	4.505015
54	23.051846	19.854328		15.361944	13.627481	103	4.826237	4.687800	4.558008	4.436153	4.281189
55	22.748786	19.639048		15.247376	13.542469	104	4.547313	4.425330	4.310628	4.202653	4.062526
56	22.439374	19.417606	17.034906	15.127931	13.453308	105	4.278998	4.171960	4.071018	3.975742	3.849375
57	22.123610	19.189924	16.867956	15.003452	13.359831	106	4.021360	3.927846	3.839430	3.755739	3.642069
58	21.801529	18.955976	16.695210		13.261917	107	3.774435	3.693118	3.616032	3.542891	3.440927
59	21.473200	18.715710	16.516584	14.738929	13.159431	108	3.538256	3.467906	3.401034	3.337410	3.246189
60	21.138621	18.469100	16.331994	14.598638	13.052219	109	3.312755	3.252210	3.194520	3.139490	3.058100
61	20.797897	18.216146	16.141377	14.452870	12.940162	110	3.097862	3.046056	2.996574	2.949256	2.876840
62	20.451131		15.944670	14.301502	12.823153	111	2.893510	2.849470	2.807280	2.766847	2.702576
63	20.098390	17.691206	15.741810	14.144446	12.701041	112	2.699458	2.662270	2.626554	2.592265	2.535384
64				13.981612		113	2.515603	2.484430	2.454438	2.425563	2.375339
65				13.812948		114	2.341602	2.315690	2.290722	2.266633	2.222411
66				13.638384		115	2.177248	2.155946	2.135364	2.115477	2.076631
67				13.457884		116	2.022474	2.005146	1.988364	1.972130	1.938089
68				13.271430		117	1.876729	1.862848	1.849365	1.836291	1.806558
69				13.079004		118	1.739430	1.728480	1.717842	1.707519	1.681614
70	l .	15.660060			11.695677	119	1.610954	1.602536	1.594341	1.586361	1.563833
71				12.676257		120	1.489311	1.483066	1.476951	1.470997	1.451488
72				12.466042		121	1.374569	1.370148	1.365819	1.361605	1.344807
73		14.704482			11.180744	122	1.261647	1.258868	1.256178	1.253521	1.239246
74	l .	14.376050			10.997773		1.107868	1.106846	1.105818	1.104820	1.093526
75		14.043094			10.809229	124	1.000000	1.000000	1.000000	1.000000	1.000000
76				11.568010		125	0	0	0	0	0
. •	1						ı	Ů	Ů	· ·	ŭ