ACSC/STAT 3720, Life Contingencies I
 Winter 2015
 Toby Kenney
 Homework Sheet 2
 Model Solutions

Basic Questions

1. Using the select lifetable in Table 1, calculate:
(a) the probability that an individual aged 36 who was select 1 year ago dies within the next 8 years.
The probability is $8 q_{[35]+1}=\frac{l_{[41]+3}}{l_{[35]+1}}=\frac{9936.94}{9972.79}=0.9964=0.0036$.
(b) the probability that an individual aged 42 who was select 6 years ago dies within the next 4 years.
The probability is ${ }_{4} q_{[36]+6}={ }_{4} q_{[39]+3}=1-\frac{l_{[43]+3}}{l_{[39]+3}}=1-\frac{9923.36}{9948.55}=1-.9975=0.0025$.
(c) the probability that an individual aged 33 who is select survives to age 65.

This probability is given by $\frac{l_{[62]+3}}{l_{[33]}}=\frac{9568.61}{9981.07}=0.9617$.
(d) ${ }_{3} \mid{ }_{6} q_{[35]+2}$

This is the probability that an individual aged 37 who was select 2 years ago survives for 3 years, then dies within the following 6 years. It is calculated as the product ${ }_{3} \mid{ }_{6} q_{[35]+2}={ }_{3}$ $p_{[35]+26} q_{[35]+5}=\frac{l_{[37]+3}-l_{[43]+3}}{l_{[35]+2}}=\frac{9958.44-9923.26}{9970.16}=0.003529$.
2. Using the select lifetable in Table 1, calculate the expected curtate future lifetime for
(a) a select individual aged 65

The expected curtate future lifetime is given by

$$
\sum_{n=1}^{\infty}{ }_{n} p_{[65]}=\frac{\sum_{n=1}^{\infty} l_{[65]+n}}{l_{[65]}}
$$

We evaluate this sum as

$$
\frac{9512.09+9479.35+9438.30+\cdots+3.30+1.21+0.37+0.09+0.01}{9538.19}=29.13
$$

(b) an individual aged 65 in the ultimate part of the model.

This is given as

$$
\sum_{n=1}^{\infty}{ }_{n} p_{[62]+3}=\frac{\sum_{n=1}^{\infty} l_{[62]+n+3}}{l_{[62]+3}}
$$

We evaluate this sum as

$$
\frac{9528.85+9485.52+9438.30+\cdots+3.30+1.21+0.37+0.09+0.01}{9568.61}=29.04
$$

3. Using the ultimate mortality model

$$
\mu_{x}=0.000077+0.0000078 \times 1.099^{x}
$$

and select mortality

$$
\mu_{[x+s]}=0.85^{2-s} \mu_{x+s}
$$

calculate a select life table between ages 54 and 59 using radix 10,000. [You may use the approximation $\left.q_{[x]+t}=\mu_{[x+0.5]+t}.\right]$

x	$l_{[x]}$	$l_{[x]+1}$	$l_{[x]+2}$
54	9993.75	9983.53	9970.40
55	9979.02	9967.86	9953.52
56	9962.93	9950.74	9935.07
57	9945.36	9932.04	9914.91
58	9926.15	9911.60	9892.88
59	9905.16	9889.26	9868.80

Standard Questions

4. An insurance policy is considering a new term insurance policy where individuals have the opportunity to renew their select status after 3 years of the policy and every 3 years thereafter. The appropriate lifetable is Table 1. The company finds that a select individual aged 38 has a probability 0.93 of being alive and select again 3 years later. What is the probability that an individual who is alive but not select again 3 years later (at age 41) survives to the end of the 10-year term (i.e. at age 48)?
The probability that a select individual aged 38 is alive 3 years later is $\frac{9953.69}{9963.81}=0.998984324$. The probability that a select individual aged 38 is alive 10 years later is $\frac{9907: 10}{9963.81}=0.994308402$. The probability that a select individual aged 38 is select again 3 years later and survives to the end of the 10 -year term is $0.93 \frac{9907.10}{9949.79}=0.926009795$. Therefore, the probability that a select individual aged 38 is not select 3 years later, but survives to the end of the 10 year term is $0.994308402-0.926009795=0.0682986$. The probability that a select individual aged 38 is alive but not select 3 years later is $0.998984324-0.93=0.068984$. Therefore the probability that such an individual survives to the end of the 10 -year term is $\frac{0.0682986}{0.068984}=0.9901$.
