# ACSC/STAT 3720, Life Contingencies I <br> Winter 2017 <br> Toby Kenney <br> Homework Sheet 5 <br> Model Solutions 

## Basic Questions

1. An insurance company offers a whole life insurance policy with benefit $\$ 800,000$ payable at the end of the year of death. The premium for this policy for a select individual aged 33 for whom the lifetable in Table 1 is appropriate, is \$1624, payable at the start of each year. If the current interest rate is $i=0.07$, what is the probability that the present value of future loss for this policy exceeds \$250,000?
If the policyholder dies in the $n$th year, then the present value of premiums received is $1624 \ddot{a}_{\bar{n} \mid 0.07}=1624 \times 1.07\left(\frac{1-1.07^{-n}}{0.07}\right)=24824\left(1-1.07^{-n}\right)$. The present value of the insurance benefit is $800000(1.07)^{-n}$, so the present value of future loss is $824824(1.07)^{-n}-24824$. This is more than $\$ 250,000$ whenever

$$
\begin{aligned}
824824(1.07)^{-n}-24824 & >250000 \\
824824(1.07)^{-n} & >274824 \\
\log (824824)-n \log (1.07) & >\log (274824) \\
n \log (1.07) & <\log (824824)-\log (274824) \\
n & <\frac{\log (824824)-\log (274824)}{\log (1.07)}=16.24
\end{aligned}
$$

So the PVFL exceeds 250000 if the individual dies within the first 16 years. The probability of this is

$$
{ }_{16} q_{[33]}=1-{ }_{16} p_{[33]}=1-\frac{9897.94}{9981.07}=0.008328766
$$

2. An insurance company offers a 5-year endowment insurance policy with death benefit $\$ 200,000$ payable at the end of the year of death. If the interest rate is $i=0.06$, calculate the annual premium for this policy for a select individual aged 47, using the lifetable in Table 1 and the equivalence principle.
We calculate that

$$
A_{[47]: \overline{5} \mid}=\frac{5.53}{9909.11}(1.06)^{-1}+\frac{6.93}{9909.11}(1.06)^{-2}+\frac{8.67}{9909.11}(1.06)^{-3}+\frac{10.85}{9909.11}(1.06)^{-4}+\frac{9877.13}{9909.11}(1.06)^{-5}=0.7475974
$$

We then get $\ddot{a}_{[47]: 5 \mid}=\frac{1.06}{0.06}\left(1-A_{[47]: 5 \mid}\right)=4.459113$. The premium is therefore

$$
\frac{200000 \times 0.7475974}{4.459113}=\$ 33,531.22
$$

3. The current interest rate is $i=0.05$. An individual aged 44 to whom the ultimate part of the lifetable in Table 1 applies, wants to purchase a whole life insurance policy. Premiums are payable until age 80. The benefit of this policy should be $\$ 1,500,000$ at the end of the year of death. The initial costs to the insurance company are $\$ 3,000$ plus $10 \%$ of the first premium. Renewal costs are $4 \%$ of subsequent premiums. Calculate the Gross annual premiums for this policy. You calculate $A_{44}=0.112997$ and $A_{80}=0.457434$.
The EPV of the benefit is $1500000 \times 0.112997=\$ 169,495.50$. If the gross premium is $P$, then the premiums less expenses are $P\left(0.96 \ddot{a}_{44: \overline{36}}-0.06\right)-3000$. We calculate
$\ddot{a}_{44: \overline{36} \mid}=\ddot{a}_{44}-{ }_{36} p_{44}(1.05)^{-36} \ddot{a}_{80}=\frac{1.05}{0.05}\left(1-0.112997-(1-0.457434) \frac{8423.00}{9936.94}(1.05)^{-36}\right)=16.95954$
We therefore get

$$
\begin{aligned}
(16.95954 \times 0.96-0.06) P-3000 & =169495.50 \\
16.22116 P & =172495.50 \\
P & =\$ 10,633.98
\end{aligned}
$$

## Standard Questions

4. A select individual aged 49, to whom the lifetable in Table 1 applies, wants to purchase a whole life insurance policy. She can afford to pay annual premiums of $\$ 9,300$. The interest rate is $i=0.05$, which gives $A_{[49]}=0.1398689$. She wants to receive a death benefit of \$1,200,000. Using the equivalence principal to calculate net premiums, at what age can she stop paying premiums for the insurance?
You may use the following values of $f(x)=\left(1-A_{x}\right)_{x-49} p_{[49]}(1.05)^{-(x-49)}$ :

| $x$ | $f(x)$ | $x$ | $f(x)$ | $x$ | $f(x)$ | $x$ | $f(x)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 70 | 0.2281648 | 81 | 0.09288482 | 92 | 0.02711120 | 103 | 0.003734326 |
| 71 | 0.2120393 | 82 | 0.08451214 | 93 | 0.02358338 | 104 | 0.002915033 |
| 72 | 0.1967820 | 83 | 0.07668011 | 94 | 0.02038711 | 105 | 0.002238788 |
| 73 | 0.1823552 | 84 | 0.06936650 | 95 | 0.01750544 | 106 | 0.001688852 |
| 74 | 0.1687230 | 85 | 0.06255000 | 96 | 0.01492144 | 107 | 0.001248978 |
| 75 | 0.1558514 | 86 | 0.05621010 | 97 | 0.01261817 | 108 | 0.0009035773 |
| 76 | 0.1437080 | 87 | 0.05032701 | 98 | 0.01057860 | 109 | 0.0006378986 |
| 77 | 0.1322619 | 88 | 0.04488158 | 99 | 0.008785621 | 110 | 0.0004382116 |
| 78 | 0.1214839 | 89 | 0.03985522 | 100 | 0.007222023 | 111 | 0.0002919749 |
| 79 | 0.1113459 | 90 | 0.03522981 | 101 | 0.005870512 | 112 | 0.0001879673 |
| 80 | 0.1018213 | 91 | 0.03098761 | 102 | 0.004713731 | 113 | 0.0001164021 |

The EPV of the benefits is $1200000 \times 0.1398689=\$ 167,842.68$. We therefore want to choose the number of premiums $n$ so that

$$
\begin{aligned}
9300 \ddot{a}_{[49]: \bar{n} \mid} & \geqslant 167842.68 \\
\ddot{a}_{[49]: \bar{n} \mid} & \geqslant 18.04753 \\
\ddot{a}_{[49]}-{ }_{n} p_{[49]}(1.05)^{-n} \ddot{a}_{[49]+n} & =18.04753
\end{aligned}
$$

We have that $\ddot{a}_{[49]}=\frac{1.05}{0.05}\left(1-A_{[49]}\right)=21 \times(1-0.1398689)=18.06275$. The above equation therefore becomes

$$
\begin{aligned}
{ }_{n} p_{[49]}(1.05)^{-n} \ddot{a}_{[49]+n} & =18.06275-18.04753 \\
{ }_{n} p_{[49]}(1.05)^{-n}\left(\frac{1.05}{0.05}\right)\left(1-A_{[49]+n}\right) & =0.01522 \\
{ }_{n} p_{[49]}(1.05)^{-n}\left(1-A_{[49]+n}\right) & =0.0007247619
\end{aligned}
$$

from the table given, we see that the solution to this is when $49+n=109$, so she can stop paying premiums at age 109.
5. An individual aged 45 is paying premiums of $\$ 200$ a month for a 10-year endowment insurance policy which pays benefits at the end of the month of death. The individual's mortality follows the ultimate part of Table 1, and the interest rate is $i^{(12)}=0.09$, so that $A_{45}=0.0313219$ and $A_{55}=0.0617432$, calculate the equivalent annual premiums (for a policy which pays benefits at the end of the year of death, and has the same death benefit) using:
(a) Uniform distribution of deaths

We have $A_{45}=0.0313219$, so under UDD, we get $A_{45}^{(12)}=\frac{i}{i(12)} A_{45}=\frac{0.0938069}{0.09} \times 0.0313219=$ 0.03264678 and similarly $A_{55}^{(12)}=0.06435487$. This gives that $A_{45: 10 \mid}^{(12)}=A_{45}^{(12)}+{ }_{10} p_{45}(1.0075)^{-120}(1-$ $\left.A_{55}^{(12)}\right)=0.4102071$. This gives $\ddot{a}_{45: \overline{10} \mid}^{(12)}=\frac{1-0.4102071}{d^{(12)}}$. We have that $d^{(12)}=\frac{0.09}{1.0075}=$ 0.08933002 , so that $\ddot{a}_{45: \overline{10} \mid}^{(12)}=6.813033$.

The benefit is $\frac{200 \times 12 \times 6.813033}{0.4102071}=\$ 39,861.03$. For annual premiums we have $A_{45: \overline{10} \mid}=A_{45}+{ }_{10}$ $p_{45}(1.0075)^{-120}\left(1-A_{55}\right)=0.4099362$ and $\ddot{a}_{45: \overline{10} \mid}=(1-0.4099362) \frac{1.0077^{12}}{1.0075^{12}-1}=6.880260$.
The annual premium is therefore $\frac{39861.03 \times 0.4099362}{6.88026}=\$ 2,374.98$.
(b) Woolhouse's formula

We have $\ddot{a}_{45}=\left(1-A_{45}\right) \frac{1.0075^{12}}{1.0075^{12}-1}=11.29498$ and $\ddot{a}_{55}=10.94026$. From the lifetable, we get $q_{45}=1-\frac{9923.26}{9930.38}$ and $q_{44}=1-\frac{9930.38}{9936.94}$, so we approximate $\mu_{45}=0.0006885773$. Similarly, we approximate $\mu_{55}=0.001627097$. Force of interest is $\delta=12 \log (1.0075)=0.08966418$ Now Woolhouse's formula gives

$$
\begin{aligned}
& \ddot{a}_{45}^{(12)}=\ddot{a}_{45}-\frac{11}{24}+\frac{143}{1728}(0.08966418+0.0006885773)=10.84412 \\
& \ddot{a}_{55}^{(12)}=\ddot{a}_{55}-\frac{11}{24}+\frac{143}{1728}(0.08966418+0.0006885773)=10.48948
\end{aligned}
$$

This gives

$$
\ddot{a}_{45: \overline{10} \mid}^{(12)}=10.84412-{ }_{10} p_{45}(1.0075)^{-120} \times 10.48948=6.611306
$$

Hence we get

$$
A_{45: 10 \mid}^{(12)}=1-0.08933002 \times 6.611306=0.4094119
$$

This gives a benefit of

$$
\frac{200 \times 12 \times 6.611306}{0.4094119}=\$ 38,755.92
$$

The premium for an annual policy with this benefit is therefore

$$
\frac{38755.92 \times 0.4099362}{6.88026}=\$ 2,309.14
$$

6. An insurance company provides a regular annual premium annuity contract to a select individual aged 44, using the lifetable in Table 1. The interest rate is $i=0.06$. This gives that $A_{[62]+3}=0.218135, A_{[67]+3}=0.270910$ and $A_{[44]}=0.07872046$. The individual will pay annual net premiums until age 65 (so the last premium will be at age 64). From age 65, they will receive an annuity of $\$ 30,000$ at the start of each year. Premiums are calculated using the equivalence principle. The annuity is guaranteed for 5 years (regardless of whether the individual survives to age 65). What is the probability that the insurance company makes a net profit on this policy?
The benefits are a 5 -year annuity certain from age 65 to 70 , which has present value $30000 \times$ $(1.06)^{-21} \frac{1.06-(1.06)^{-4}}{0.06}=39403.05$ and a deferred life annuity starting from age 70 , which has EPV $30000 \times(1.06)_{26}^{-26} p_{[44]} \ddot{a}_{70}=30000 \times(1.06)^{-26} \frac{9330.85}{9931.96} \times(1-0.270910) \times \frac{1.06}{0.06}=\$ 79797.77$. The total EPV of benefits is therefore $\$ 119,200.82$.
We calculate $A_{[44]: \overline{21} \mid}=A_{[44]}+\left(1-A_{65}\right)_{21} p_{[44]}(1.06)^{-21}=0.3002963$ and so $\ddot{a}_{[44]: \overline{21} \mid}=$ $\frac{1.06}{0.06}(1-0.3002963)=12.36143$. The premium is therefore $\frac{119200.82}{12.36143}=\$ 9,642.96$.
To make a profit, the present value of premiums received must exceed the guaranteed annuity value of $\$ 39,403.05$. That is, they must pay at least $n$ premiums such that

$$
\begin{aligned}
9642.96 \ddot{a}_{\bar{n} \mid} & >39403.05 \\
\frac{1.06}{0.06}\left(1-1.06^{-n}\right) & >\frac{39403.05}{9642.96}=4.086199 \\
1-1.06^{-n} & >0.2312943 \\
1.06^{-n} & <0.76870570 .2312943 \\
n & >-\frac{\log (0.7687057)}{\log (1.06)}=4.514364
\end{aligned}
$$

so they must make at least 5 payments, which happens if they survive 4 years. If they survive to age 65 , the accumulated value at age 65 of the premiums received is $9642.96\left(\frac{1.06^{21}-1.06^{1}}{0.06}\right)=$ 376005.30 . To make a profit, the present value at age 65 of the annuity paid out must be less than this, that is, the number of payments $m$ in the annuity must satisfy:

$$
\begin{aligned}
30000 \times \frac{1.06}{0.06}\left(1-1.06^{-m}\right) & <376005.30 \\
\left(1-1.06^{-m}\right) & <0.709444 \\
1.06^{-m} & >0.290556 \\
m & <-\frac{\log (0.290556)}{\log (1.06)}=21.211
\end{aligned}
$$

So they must die before the 22 nd payment of the annuity is due at age 87 . The policy makes a net profit if the age at death is between 48 and 87 . The probability of this is $\frac{9907.10-6999.51}{9931.96}=0.2927509$.

Table 1: Select lifetable to be used for questions on this assignment

| $x$ | $l_{[x]}$ | $l_{[x]+1}$ | $l_{[x]+2}$ | $l_{[x]+3}$ |
| :---: | :---: | :---: | :---: | :---: |
| 25 | 9998.75 | 9997.65 | 9996.30 | 9994.66 |
| 26 | 9997.00 | 9995.83 | 9994.40 | 9992.66 |
| 27 | 9995.14 | 9993.90 | 9992.38 | 9990.52 |
| 28 | 9993.16 | 9991.84 | 9990.22 | 9988.24 |
| 29 | 9991.05 | 9989.65 | 9987.92 | 9985.80 |
| 30 | 9988.81 | 9987.30 | 9985.46 | 9983.18 |
| 31 | 9986.40 | 9984.80 | 9982.82 | 9980.38 |
| 32 | 9983.83 | 9982.11 | 9979.99 | 9977.37 |
| 33 | 9981.07 | 9979.23 | 9976.95 | 9974.13 |
| 34 | 9978.11 | 9976.13 | 9973.68 | 9970.64 |
| 35 | 9974.93 | 9972.79 | 9970.16 | 9966.88 |
| 36 | 9971.50 | 9969.20 | 9966.36 | 9962.82 |
| 37 | 9967.80 | 9965.33 | 9962.25 | 9958.44 |
| 38 | 9963.81 | 9961.14 | 9957.82 | 9953.69 |
| 39 | 9959.50 | 9956.61 | 9953.02 | 9948.55 |
| 40 | 9954.84 | 9951.71 | 9947.82 | 9942.98 |
| 41 | 9949.79 | 9946.41 | 9942.19 | 9936.94 |
| 42 | 9944.32 | 9940.66 | 9936.08 | 9930.38 |
| 43 | 9938.39 | 9934.41 | 9929.45 | 9923.26 |
| 44 | 9931.96 | 9927.64 | 9922.25 | 9915.52 |
| 45 | 9924.97 | 9920.28 | 9914.42 | 9907.10 |
| 46 | 9917.37 | 9912.28 | 9905.91 | 9897.94 |
| 47 | 9909.11 | 9903.58 | 9896.65 | 9887.98 |
| 48 | 9900.13 | 9894.11 | 9886.57 | 9877.13 |
| 49 | 9890.36 | 9883.80 | 9875.59 | 9865.30 |
| 50 | 9879.71 | 9872.57 | 9863.63 | 9852.42 |
| 51 | 9868.12 | 9860.34 | 9850.59 | 9838.38 |
| 52 | 9855.48 | 9847.01 | 9836.39 | 9823.08 |
| 53 | 9841.72 | 9832.48 | 9820.90 | 9806.39 |
| 54 | 9826.71 | 9816.64 | 9804.02 | 9788.18 |
| 55 | 9810.34 | 9799.37 | 9785.60 | 9768.33 |
| 56 | 9792.49 | 9780.52 | 9765.51 | 9746.67 |
| 57 | 9773.03 | 9759.97 | 9743.60 | 9723.05 |
| 58 | 9751.79 | 9737.56 | 9719.69 | 9697.28 |
| 59 | 9728.63 | 9713.10 | 9693.62 | 9669.17 |
| 60 | 9703.36 | 9686.43 | 9665.17 | 9638.51 |
| 61 | 9675.80 | 9657.33 | 9634.15 | 9605.07 |
| 62 | 9645.73 | 9625.59 | 9600.31 | 9568.61 |
| 63 | 9612.94 | 9590.98 | 9563.42 | 9528.85 |
| 64 | 9577.18 | 9553.24 | 9523.19 | 9485.52 |
| 65 | 9538.19 | 9512.09 | 9479.35 | 9438.30 |
| 66 | 9495.69 | 9467.25 | 9431.58 | 9386.86 |
| 67 | 9449.37 | 9418.39 | 9379.54 | 9330.85 |
| 68 | 9398.90 | 9365.17 | 9322.87 | 9269.88 |
| 69 | 9343.95 | 9307.23 | 9261.20 | 9203.55 |
| 70 | 9284.12 | 9244.18 | 9194.11 | 9131.43 |
| 71 | 9219.03 | 9175.59 | 9121.17 | 9053.07 |
| 72 | 9148.24 | 9101.03 | 9041.91 | 8967.97 |
| 73 | 9071.30 | 9020.03 | 8955.85 | 8875.63 |
|  |  |  |  |  |


| $x$ | $l_{[x]}$ | $l_{[x]+1}$ | $l_{[x]+2}$ | $l_{[x]+3}$ |
| :---: | ---: | ---: | ---: | ---: |
| 74 | 8987.73 | 8932.10 | 8862.49 | 8775.52 |
| 75 | 8897.04 | 8836.71 | 8761.27 | 8667.10 |
| 76 | 8798.69 | 8733.34 | 8651.66 | 8549.78 |
| 77 | 8692.13 | 8621.41 | 8533.09 | 8423.00 |
| 78 | 8576.81 | 8500.36 | 8404.95 | 8286.16 |
| 79 | 8452.13 | 8369.60 | 8266.68 | 8138.66 |
| 80 | 8317.52 | 8228.53 | 8117.67 | 7979.93 |
| 81 | 8172.36 | 8076.57 | 7957.35 | 7809.41 |
| 82 | 8016.08 | 7913.13 | 7785.15 | 7626.56 |
| 83 | 7848.11 | 7737.67 | 7600.54 | 7430.89 |
| 84 | 7667.89 | 7549.66 | 7403.05 | 7221.99 |
| 85 | 7474.92 | 7348.64 | 7192.27 | 6999.51 |
| 86 | 7268.77 | 7134.21 | 6967.86 | 6763.22 |
| 87 | 7049.07 | 6906.07 | 6729.62 | 6513.04 |
| 88 | 6815.55 | 6664.05 | 6477.46 | 6249.02 |
| 89 | 6568.09 | 6408.10 | 6211.48 | 5971.42 |
| 90 | 6306.70 | 6138.35 | 5931.96 | 5680.73 |
| 91 | 6031.59 | 5855.15 | 5639.41 | 5377.67 |
| 92 | 5743.19 | 5559.08 | 5334.61 | 5063.27 |
| 93 | 5442.15 | 5250.97 | 5018.61 | 4738.86 |
| 94 | 5129.44 | 4931.97 | 4692.79 | 4406.12 |
| 95 | 4806.33 | 4603.54 | 4358.89 | 4067.08 |
| 96 | 4474.39 | 4267.51 | 4018.96 | 3724.10 |
| 97 | 4135.60 | 3926.04 | 3675.44 | 3379.91 |
| 98 | 3792.25 | 3581.66 | 3331.11 | 3037.57 |
| 99 | 3447.02 | 3237.23 | 2989.05 | 2700.39 |
| 100 | 3102.90 | 2895.94 | 2652.63 | 2371.88 |
| 101 | 2763.19 | 2561.21 | 2325.37 | 2055.64 |
| 102 | 2431.39 | 2236.61 | 2010.90 | 1755.27 |
| 103 | 2111.15 | 1925.80 | 1712.81 | 1474.18 |
| 104 | 1806.12 | 1632.34 | 1434.48 | 1215.44 |
| 105 | 1519.82 | 1359.55 | 1178.94 | 981.65 |
| 106 | 1255.46 | 1110.36 | 948.70 | 774.71 |
| 107 | 1015.81 | 887.14 | 745.58 | 595.71 |
| 108 | 802.96 | 691.49 | 570.56 | 444.87 |
| 109 | 618.23 | 524.17 | 423.71 | 321.41 |
| 110 | 462.04 | 385.00 | 304.13 | 223.65 |
| 111 | 333.80 | 272.80 | 210.00 | 149.10 |
| 112 | 231.99 | 185.53 | 138.71 | 94.62 |
| 113 | 154.19 | 120.34 | 87.07 | 56.74 |
| 114 | 97.30 | 73.90 | 51.50 | 31.84 |
| 115 | 57.78 | 42.55 | 28.41 | 16.52 |
| 116 | 31.92 | 22.69 | 14.43 | 7.81 |
| 117 | 16.15 | 11.04 | 6.63 | 3.30 |
| 118 | 7.34 | 4.79 | 2.69 | 1.21 |
| 119 | 2.90 | 1.79 | 0.93 | 0.37 |
| 120 | 0.95 | 0.55 | 0.26 | 0.09 |
| 121 | 0.23 | 0.13 | 0.05 | 0.01 |
| 122 | 0.03 | 0.02 | 0.01 | 0.00 |
|  |  |  |  |  |

