ACSC/STAT 3720, Life Contingencies I
 Winter 2018

Toby Kenney
Homework Sheet 1
Due: Friday 26th January: 12:30 PM

Basic Questions

1. An insurance company models the future lifetime of an individual as having survival function $S(x)=e^{-\left(\frac{x}{85}\right)^{3}}$. Calculate the force of mortality.
2. An insurance company models the future lifetime of an individual as having survival function $S(x)=e^{-\frac{x^{2}}{360}}$. Calculate:
(a) The mean and standard deviation of T_{x}.
(b) The mean curtate future lifetime.
3. An insurance company uses a survival model with survival function ${ }_{t} p_{x}=$ $\left(1-\frac{t}{120-x}\right)^{\alpha}$. The company wants to ensure that under this model, an individual aged 60 has probability 0.5 of surviving for 20 years. What value of α should they choose?
4. An insurance company uses a survival model given by

$$
S_{0}(x)=\frac{1}{3}\left(1-\frac{x}{105}\right)^{\frac{1}{4}}+\frac{2}{3}\left(1-\frac{x}{120}\right)^{\frac{1}{3}}
$$

Using this model, prepare a life table for the ages from 40 to 45 , using radix 10,000 .
5. Using the lifetable:

x	l_{x}	d_{x}
35	10000.00	3.91
36	9996.09	4.37
37	9991.72	4.91
38	9986.81	5.52
39	9981.30	6.21
40	9975.09	7.00

calculate the probability that an individual aged 36 years and five months survives another 3 years, using:
(a) the uniform distribution of deaths assumption.
(b) the constant force of mortality assumption.

Standard Questions

6. An insurance company wants to use a model of mortality of the form $\mu_{x}=\frac{a}{120-x}+\frac{1}{m-x}$ for $x<120$. The company wants to ensure that the life expectancy for an individual aged 65 is 15 years and that the force of mortality at age 45 is $\mu_{65}=\frac{1}{44}$. What values of a and m should they use to match these values.
7. An insurance company prepares the following lifetable for an individual.

x	l_{x}	d_{x}
40	10000.00	51.16
41	9948.84	59.96
42	9888.87	70.24
43	9818.64	82.19
44	9736.44	96.08
45	9640.36	112.16
46	9528.20	130.72
47	9397.48	152.04
48	9245.44	176.41
49	9069.03	204.11
50	8864.92	235.34

Prepare a new life table for this individual over the age range 45-50 using radix 10,000 .

