ACSC/STAT 3720, Life Contingencies I Winter 2018 Toby Kenney Homework Sheet 1 Model Solutions

Basic Questions

1. An insurance company models the future lifetime of an individual as having survival function $S(x) = e^{-\left(\frac{x}{85}\right)^3}$. Calculate the force of mortality. Force of mortality is

$$\mu_x = -\frac{d}{dx} \log(S(x)) = \frac{d}{dx} \left(\frac{x}{85}\right)^3 = \frac{3x^2}{85^3}$$

2. An insurance company models the future lifetime of an individual as having survival function $S(x) = e^{-\frac{x^2}{360}}$. Calculate:

(a) The mean and standard deviation of T_x . The mean of T_x is

$$\int_{0}^{\infty} S_{x}(t) dt = \int_{0}^{\infty} e^{-\frac{(x+t)^{2}}{360}} e^{-\frac{x^{2}}{360}} dt$$
$$= e^{\frac{x^{2}}{360}} \int_{x}^{\infty} e^{-\frac{y^{2}}{360}} dy$$
$$= e^{\frac{x^{2}}{360}} \sqrt{360\pi} \left(1 - \Phi\left(\frac{x}{\sqrt{180}}\right)\right)$$

The mean of T_x^2 is

$$2\int_{0}^{\infty} tS_{x}(t) dt = 2e^{\frac{x^{2}}{360}} \int_{0}^{\infty} te^{-\frac{(x+t)^{2}}{360}} dt$$
$$= 2e^{\frac{x^{2}}{360}} \int_{x}^{\infty} (y-x)e^{-\frac{y^{2}}{360}} dy$$
$$= 2e^{\frac{x^{2}}{360}} \left(\left[-360e^{-\frac{y^{2}}{360}} \right]_{x}^{\infty} - x\sqrt{360\pi} \left(1 - \Phi\left(\frac{x}{\sqrt{180}}\right) \right) \right)$$
$$= 720 - 2xe^{\frac{x^{2}}{360}} \sqrt{360\pi} \left(1 - \Phi\left(\frac{x}{\sqrt{180}}\right) \right)$$

The variance of T_x is therefore

$$720 - 2xe^{\frac{x^2}{360}}\sqrt{360\pi}\left(1 - \Phi\left(\frac{x}{\sqrt{180}}\right)\right) - \left(e^{\frac{x^2}{360}}\sqrt{360\pi}\left(1 - \Phi\left(\frac{x}{\sqrt{180}}\right)\right)\right)^2$$

(b) The mean curtate future lifetime.

The probability of surviving for at least n years is $e^{-\frac{(x+n)^2-x^2}{360}} = e^{-\frac{2xn+n^2}{360}}$. The curtate expected future lifetime is therefore

$$\sum_{n=1}^{\infty} e^{-\frac{2xn+n^2}{360}}$$

3. An insurance company uses a survival model with survival function $_tp_x = \left(1 - \frac{t}{120-x}\right)^{\alpha}$. The company wants to ensure that under this model, an individual aged 60 has probability 0.5 of surviving for 20 years. What value of α should they choose?

The probability of an individual aged 60 surviving for 20 years is ${}_{20}p_{60} = \left(1 - \frac{20}{120 - 60}\right)^{\alpha} = \left(\frac{2}{3}\right)^{\alpha}$, so to get ${}_{20}p_{60} = \frac{1}{2}$, we need $\alpha = \frac{\log(\frac{1}{2})}{\log(\frac{2}{3})} = 1.70951129135$.

4. An insurance company uses a survival model given by

$$S_0(x) = \frac{1}{3} \left(1 - \frac{x}{105} \right)^{\frac{1}{4}} + \frac{2}{3} \left(1 - \frac{x}{120} \right)^{\frac{1}{3}}$$

Using this model, prepare a life table for the ages from 40 to 45, using radix 10,000.

We calculate

$$S_{0}(40) = \frac{1}{3} \left(1 - \frac{40}{105}\right)^{\frac{1}{4}} + \frac{2}{3} \left(1 - \frac{40}{120}\right)^{\frac{1}{3}} = 0.8780586774$$

$$S_{0}(41) = \frac{1}{3} \left(1 - \frac{41}{105}\right)^{\frac{1}{4}} + \frac{2}{3} \left(1 - \frac{41}{120}\right)^{\frac{1}{3}} = 0.874478064187$$

$$S_{0}(42) = \frac{1}{3} \left(1 - \frac{42}{105}\right)^{\frac{1}{4}} + \frac{2}{3} \left(1 - \frac{42}{120}\right)^{\frac{1}{3}} = 0.870863315825$$

$$S_{0}(43) = \frac{1}{3} \left(1 - \frac{43}{105}\right)^{\frac{1}{4}} + \frac{2}{3} \left(1 - \frac{43}{120}\right)^{\frac{1}{3}} = 0.86721361231$$

$$S_{0}(44) = \frac{1}{3} \left(1 - \frac{44}{105}\right)^{\frac{1}{4}} + \frac{2}{3} \left(1 - \frac{44}{120}\right)^{\frac{1}{3}} = 0.863528101405$$

$$S_{0}(45) = \frac{1}{3} \left(1 - \frac{45}{105}\right)^{\frac{1}{4}} + \frac{2}{3} \left(1 - \frac{45}{120}\right)^{\frac{1}{3}} = 0.859805896856$$

$$S_{0}(46) = \frac{1}{3} \left(1 - \frac{46}{105}\right)^{\frac{1}{4}} + \frac{2}{3} \left(1 - \frac{46}{120}\right)^{\frac{1}{3}} = 0.856046076464$$

This gives

$$p_{40} = \frac{0.874478064187}{0.8780586774} = 0.99592212536$$

$$_{2}p_{40} = \frac{0.870863315825}{0.8780586774} = 0.991805375016$$

$$_{3}p_{40} = \frac{0.86721361231}{0.8780586774} = 0.987648815086$$

$$_{4}p_{40} = \frac{0.863528101405}{0.8780586774} = 0.983451474977$$

$$_{5}p_{40} = \frac{0.859805896856}{0.8780586774} = 0.979212345355$$

$$_{6}p_{40} = \frac{0.856046076464}{0.8780586774} = 0.97493037595$$

This gives us the following lifetable:

x	l_x	d_x
45	10000.00	40.78
46	9959.22	41.17
47	9918.05	41.57
48	9876.49	41.97
49	9834.51	42.39
50	9792.12	42.82

5. Using the lifetable:

x	l_x	d_x
35	10000.00	3.91
36	9996.09	4.37
37	9991.72	4.91
38	9986.81	5.52
39	9981.30	6.21
40	9975.09	7.00

calculate the probability that an individual aged 36 years and five months survives another 3 years, using:

(a) the uniform distribution of deaths assumption.

Under UDD, we get

$$l_{36\frac{5}{12}} = \frac{5}{12}l_{37} + \frac{7}{12}l_{36} = \frac{5}{12} \times 9991.72 + \frac{7}{12} \times 9996.09 = 9994.26916667$$

and

$$l_{39\frac{5}{12}} = \frac{5}{12}l_{40} + \frac{7}{12}l_{39} = \frac{5}{12} \times 9975.09 + \frac{7}{12} \times 9981.30 = 9978.7125$$

The probability of surviving is therefore $_{3}p_{36\frac{5}{12}} = \frac{9978.7125}{9994.26916667} = 0.998443441295.$

(b) the constant force of mortality assumption.

Under constant force of mortality, we have

$$l_{36\frac{5}{12}} = l_{37}^{\frac{5}{12}} l_{36}^{\frac{7}{12}} = 9991.72^{\frac{5}{12}} \times 9996.09^{\frac{7}{12}} = 9994.26893444$$

and

$$l_{39\frac{5}{12}} = l_{40}^{\frac{5}{12}} \times l_{39}^{\frac{7}{12}} = 9975.09^{\frac{5}{12}} \times 9981.30^{\frac{7}{12}} = 9978.71203032$$

The probability of surviving is therefore $_{3}p_{36\frac{5}{12}} = \frac{9978.71203032}{9994.26893444} = 0.9984434175.$

Standard Questions

6. An insurance company wants to use a model of mortality of the form $\mu_x = \frac{a}{120-x} + \frac{1}{m-x}$ for x < 120. The company wants to ensure that the life expectancy for an individual aged 65 is 15 years and that the force of mortality at age 65 is $\mu_{65} = \frac{1}{44}$. What values of a and b should they use to match these values.

We have that

$$tp_{65} = e^{-\int_0^t \mu_{65+s} \, ds}$$

= $e^{-\int_0^t \frac{a}{55-s} + \frac{1}{m-65-s} \, ds}$
= $e^{[a \log(55-s) + \log(m-65-s)]_0^t}$
= $\left(\frac{55-t}{55}\right)^a \left(\frac{m-65-t}{m-65}\right)$

Now this gives the life expectancy is

$$e_{65} = \int_0^{55} \left(1 - \frac{t}{55}\right)^a \left(1 - \frac{t}{m - 65}\right) dt$$

= $55 \int_0^1 u^a \left(1 - \frac{55(1 - u)}{m - 65}\right) du$
= $55 \left(\left(1 - \frac{55}{m - 65}\right) \frac{1}{a} + \frac{55}{(m - 65)(a + 1)}\right)$

We therefore need to solve

$$\begin{aligned} \frac{a}{55} + \frac{1}{m-65} &= \frac{1}{44} \\ \frac{1}{m-65} &= \frac{1}{44} - \frac{a}{55} \\ 55\left(\left(1-55\left(\frac{1}{44}-\frac{a}{55}\right)\right)\frac{1}{a} + \frac{55}{(a+1)}\left(\frac{1}{44}-\frac{a}{55}\right)\right) &= 15 \\ 55\left(\frac{1-\frac{55}{44}}{a} + 1 + \frac{55}{(a+1)}\left(\frac{1}{44}+\frac{1}{55}-\frac{a+1}{55}\right)\right) &= 15 \\ 55\left(\frac{1-\frac{55}{44}}{a} + \frac{55}{(a+1)}\left(\frac{1}{44}+\frac{1}{55}\right)\right) &= 15 \\ 55\left(\left(1-\frac{55}{44}\right)(a+1) + 55\left(\frac{1}{44}+\frac{1}{55}\right)a\right) &= 15a(a+1) \\ 15a^2 + \left(15-55(1-\frac{55}{44})-55^2\left(\frac{1}{44}+\frac{1}{55}\right)\right)a - 55(1-\frac{55}{44}) &= 0 \\ 15a^2 + (15-55(1-\frac{55}{44})-55^2\left(\frac{1}{44}+\frac{1}{55}\right)\right)a - 55(1-\frac{55}{44}) &= 0 \\ 3a^2 - 19a - 11(1-\frac{5}{4}) &= 0 \\ a &= \frac{19 \pm \sqrt{19^2 - 33}}{6} \\ a &= 0.14820495395 \\ \frac{1}{m-65} &= \frac{1}{44} - \frac{a}{55} \\ \frac{1}{m-65} &= \frac{1}{44} - \frac{a}{55} \\ \frac{1}{m-65} &= \frac{1}{44} - \frac{a}{55} \\ a &= 0.020032637200 \\ a &= 49.9185399292 \\ m &= 114.9185 \end{aligned}$$

7. An insurance company prepares the following lifetable for an individual.

x	l_x	d_x
40	10000.00	51.16
41	9948.84	59.96
42	9888.87	70.24
43	9818.64	82.19
44	9736.44	96.08
45	9640.36	112.16
46	9528.20	130.72
47	9397.48	152.04
48	9245.44	176.41
49	9069.03	204.11
50	8864.92	235.34

Prepare a new life table for this individual over the age range 45-50 using radix 10,000.

From the lifetable we calculate

$$p_{45} = \frac{9528.20}{9640.36} = 0.988365579709$$
$${}_{2}p_{45} = \frac{9397.48}{9640.36} = 0.974805920111$$
$${}_{3}p_{45} = \frac{9245.44}{9640.36} = 0.959034724844$$
$${}_{4}p_{45} = \frac{9069.03}{9640.36} = 0.940735615682$$
$${}_{5}p_{45} = \frac{8864.92}{9640.36} = 0.919563169840$$
$${}_{6}p_{45} = \frac{8629.58}{9640.36} = 0.895151218419$$

The new lifetable is therefore

x	l_x	d_x
45	10000.00	11.63
46	9883.66	13.56
47	9748.06	15.77
48	9590.35	18.30
49	9407.36	21.17
50	9195.63	24.41