ACSC/STAT 4703, Actuarial Models II

Fall 2015

Toby Kenney
Homework Sheet 1
Due: Friday 2nd October: 10:30 PM

Basic Questions

1. Loss amounts follow an exponential distribution with $\theta=12,000$. The distribution of the number of losses is given in the following table:

Number of Losses	Probability
0	0.02
1	0.24
2	0.36
3	0.28

Assume all losses are independent and independent of the number of losses. The insurance company buys excess-of-loss reinsurance on the part of the loss above $\$ 150,000$. Calculate the expected payment for this excess-of-loss reinsurance.
2. Aggregate payments have a compund distribution. The frequency distribution is negative binomial with $r=3$ and $\beta=6$. The severity distribution is a Pareto distribution with $\alpha=6$ and $\theta=12000$. Use a Gamma approximation to aggregate payments to estimate the probability that aggregate payments are more than $\$ 100,000$.
3. An insurance company models loss frequency as negative binomial with $r=4, \beta=3$, and loss severity as exponential with $\theta=\$ 4,500$. Calculate the expected aggregate payments if there is a policy limit of $\$ 50,000$ and a deductible of $\$ 1,000$ applied to each claim.
4. Claim frequency follows a negative binomial distribution with $r=8$ and $\beta=1.7$. Claim severity (in thousands) has the following distribution:

Severity	Probability
1	0.5
2	0.3
3	0.15
4	0.03
5	0.015
6	0.004
7	0.0007

Use the recursive method to calculate the exact probability that aggregate claims are at least 8 .
5. Using an arithmetic distribution $(h=1)$ to approximate a Pareto distribution with $\alpha=4$ and $\theta=9$, calculate the probability that the value is between 2.5 and 6.5 , for the approximation using:
(a) The method of rounding.
(b) The method of local moment matching, matching 1 moment on each interval.

Standard Questions

6. The number of claims an insurance company receives follows a negative binomial distribution with $r=46$ and $\beta=8.4$. Claim severity follows a negative binomial distribution with $r=14$ and $\beta=0.8$. Calculate the probability that aggregate losses exceed $\$ 4000$.
(a) Starting the recurrence 6 standard deviations below the mean.
(b) Using a suitable convolution.
