ACSC/STAT 4703, Actuarial Models II

Fall 2015
Toby Kenney
Homework Sheet 3
Due: Friday 16th October: 10:30 PM

Basic Questions

1. An insurance company collects the following claim data (in thousands):

i	d_{i}	x_{i}	u_{i}	i	d_{i}	x_{i}	u_{i}	i	d_{i}	x_{i}	u_{i}
1	0	0.4	-	8	1.0	-	15	15	2.0	-	10
2	0	1.6	-	9	1.0	4.6	-	16	2.0	-	10
3	0	-	20	10	1.0	-	15	17	2.0	2.6	-
4	0	1.8	-	11	1.0	1.3	-	18	2.0	-	20
5	0	-	10	12	1.5	-	10	19	2.0	14.6	-
6	0.5	1.9	-	13	1.5	6.8	-	20	5.0	-	15
7	0.5	1.6	-	14	1.5	1.9	-	21	5.0	8.4	-

Using a Kaplan-Meier product-limit estimator:
(a) estimate the probability that a random loss exceeds 17.3.
(b) estimate the median of the distribution.
(c) Use a Nelson- \AA alen estimator to estimate the median of the distribution.
2. An insurance company observes the following claim history:

Number of claims	Frequency
0	2,846
1	701
2	360
3	202
4	114
5	56
6	12
7	0
8	2

Use a Nelson-Åalen estimate to obtain a 95% confidence interval for the probability that a random individual makes more than 5 claims.
3. For the data in Question 1, use Greenwood's approximation to obtain a 95% confidence interval for the probability that a random loss exceeds 17.3, based on the Kaplan-Meier estimator.
(a) Using a normal approximation
(b) Using a log-transformed confidence interval.
4. An insurance company records the following data in a mortality study:

entry	death	exit	entry	death	exit	entry	death	exit
60.4	-	64.4	61.6	-	64.2	62.1	-	63.9
62.7	-	63.7	60.8	-	63.8	62.9	-	64.5
63.4	-	64.4	64.3	-	66.3	61.8	63.7	-
61.2	-	63.2	63.3	-	66.3	60.2	60.6	-
62.2	-	65.2	62.8	-	64.8	63.8	65.2	-
60.9	-	62.9	61.3	-	63.3	62.1	63.4	-
63.0	-	65.6	62.1	-	65.1			

Estimate the probability of an individual currently aged exactly 63 dying within the next year using:
(a) the exact exposure method.
(b) the actuarial exposure method.

Standard Questions

5. An insurance company collects the following claim data (in thousands):

i	d_{i}	x_{i}	u_{i}	i	d_{i}	x_{i}	u_{i}	i	d_{i}	x_{i}	u_{i}
1	0	0.7	-	8	1.0	-	20	15	2.0	4.1	-
2	0	1.3	-	9	1.0	4.2	-	16	2.0	-	15
3	0	-	10	10	1.0	-	10	17	2.0	2.9	-
4	0	11.8	-	11	1.0	1.5	-	18	2.0	8.6	-
5	0.5	-	15	12	1.0	-	10	19	5.0	-	10
6	0.5	-	15	13	1.5	4.8	-	20	5.0	-	15
7	1.0	3.6	-	14	1.5	2.9	-	21	5.0	18.4	-

It is attempting to price a new policy with a deductible of 1.0. Using a Kaplan-Meier estimator, calculate the probability that a random claim on a policy with a deductible of 1.0 exceeds 5.0.
6. An insurance company has historical data from 2,861 claims. It finds that 1,830 are less than $\$ 5,000,793$ are between $\$ 5,000$ and $\$ 20,000,168$ are between $\$ 20,000$ and $\$ 100,000$, and the remaining 40 are more than $\$ 100,000$. Calculate a 95% confidence interval for the probability that a random claim is more than $\$ 30,000$.
7. An insurance company observes the following claims (in thousands):

$$
\begin{array}{llllllllllll}
0.8 & 2.3 & 5.7 & 4.2 & 11.6 & 8.7 & 3.0 & 7.4 & 1.5 & 15.2 & 9.3 & 2.5 \\
3.8
\end{array}
$$

using a kernel density estimate with a triangular kernel with bandwidth 1 , estimate the expected loss per claim if the company introduces a deductible of 2.0 on each policy.
8. Using the following table:

Age	No. at start	enter	die	leave	No. at next age
58	0	2	1	0	1
59	1	6	0	1	6
60	6	12	1	2	15
61	15	9	0	0	24
62	22	10	2	3	27
63	27	4	3	2	26
64	26	0	2	1	23

Estimate the probability that an individual aged 61 withdraws from the policy within the next two years, conditional on surviving to the end of those two years.

