ACSC/STAT 4703, Actuarial Models II

Fall 2015
Toby Kenney
Homework Sheet 4
Due: Wednesday 28th October: 10:30 PM

Basic Questions

1. An insurance company models number of claims an individual makes in a year as following a negative binomial distribution with $\beta=1.4$, and R an unknown parameter with prior distribution a gamma distribution with $\alpha=3$ and $\theta=0.04$.
(a) What is the probability that a random individual makes exactly 3 claims?
(b) The company now observes the following claim frequencies:

Number of claims	Frequency
0	584
1	90
2	36
3	12
4	3
5	3
6	1

What is the probability that $R>0.4$? [You may use numerical integration to calculate this.]
(c) Calculate the predictive probability that an individual makes 5 claims next year. [You may use numerical integration to calculate this.]
2. An insurance company models loss sizes as following a Pareto distribution with $\alpha=3$, and finds that the posterior distribution for Θ is a Gamma distribution with $\alpha=4$ and $\theta=1400$. Calculate the Bayes estimate for Θ based on a loss function:
(a) $l(\hat{\theta}, \theta)=(\hat{\theta}-\theta)^{2}$
(b) $l(\hat{\theta}, \theta)=(\hat{\theta}-\theta)^{4}$
3. An insurance company models claim amounts as following an exponential distribution with mean Θ, where the prior distribution for Θ is a Gamma distribution with $\alpha=701$ and $\theta=600$. They observe 700 claims, with mean claim amount $\$ 3,742$. Calculate a 95% credibility interval for Θ.
(a) Using an HPD interval. [For performing the integral, make the substitution $z=\frac{\theta}{600}+\frac{2619400}{\theta}$. There are two values of θ for any particular value of z, and if these values are $\theta_{1}<\theta_{2}$, then we have that
$\left.\frac{d z}{d \theta}\right|_{\theta_{2}}-\left.\frac{d z}{d \theta}\right|_{\theta_{1}}=\frac{2619400}{180000 z^{2}-1571640000-600 z \sqrt{90000 z^{2}-1571640000}}-\frac{2619400}{180000 z^{2}-1571640000+600 z \sqrt{90000 z^{2}-1571640000}}$
You can solve the required integral numerically.]
(b) With equal probability above and below the interval. [You may use numerical integration to calculate this.]
4. Calculate a conjugate prior distribution for the variance of a normal distribution with mean 0 .

Standard Questions

5. An insurance company models number of claims made by an individual in a year as following a Poisson distribution and finds that the posterior distribution for Λ is a Gamma distribution with $\alpha=4$ and $\theta=0.02$. The company decides to use an estimate $\hat{\lambda}$ such that the probability of 3 or more claims using $\hat{\lambda}$ is the same as the probability of 3 or more claims under the predictive distribution.

Bonus Question

6. An insurance company models loss amounts as following a Weibull distribution with $\tau=3$. It uses the inverse gamma prior for the unknown parameter Θ, with parameters $\alpha=3$ and $\theta=6000$. This is a conjugate prior, and the posterior distribution after observing N observations X_{1}, \ldots, X_{n} with $\sum_{i=1}^{n} X_{i}{ }^{\tau}=t$ is inverse gamma with $\alpha=3+N$, and $\theta=\frac{1}{\frac{1}{6000}+t}$. Calculate the probability that the posterior probability of $\Theta>3000$ is more than 0.05 , after a sample of 10 observations.
