# ACSC/STAT 4703, Actuarial Models II 

## Fall 2015

Toby Kenney
Homework Sheet 1
Model Solutions

## Basic Questions

1. Loss amounts follow an exponential distribution with $\theta=12,000$. The distribution of the number of losses is given in the following table:

| Number of Losses | Probability |
| :--- | :--- |
| 0 | 0.02 |
| 1 | 0.24 |
| 2 | 0.36 |
| 3 | 0.28 |

Assume all losses are independent and independent of the number of losses. The insurance company buys excess-of-loss reinsurance on the part of the loss above $\$ 150,000$. Calculate the expected payment for this excess-of-loss reinsurance.

If there are a total of $n$ losses, the aggregate loss follows a gamma distribution with $\alpha=n$ and $\theta=12000$. The expected payment on the excess-of-loss reinsurance is therefore

$$
12000\left(\frac{\int_{12.5}^{\infty}(x-12.5) x^{n-1} e^{-x}}{\Gamma(n)}\right)
$$

Integrating by parts repeatedly, we find that this is equal to
$12000 e^{-12.5}\left((n-12.5)\left(1+12.5+\frac{12.5^{2}}{2!}+\cdots+\frac{12.5^{n-1}}{(n-1)!}\right)+\frac{12.5^{n}}{(n-1)!}\right)$
In particular

| Number of Losses | Probability | expected payment | probability times <br> expected payment |
| :--- | :--- | :--- | :--- |
| 0 | 0.02 | 0 | 0 |
| 1 | 0.24 | $12000 e^{-12.5}$ | $2880 e^{-12.5}$ |
| 2 | 0.36 | $174000 e^{-12.5}$ | $62640 e^{-12.5}$ |
| 3 | 0.28 | $1263500 e^{-12.5}$ | $356580 e^{-12.5}$ |

So the total expected payment is $422100 e^{-12.5}=1.57302$.
2. Aggregate payments have a compund distribution. The frequency distribution is negative binomial with $r=3$ and $\beta=6$. The severity distribution is a Pareto distribution with $\alpha=6$ and $\theta=12000$. Use a Gamma approximation to aggregate payments to estimate the probability that aggregate payments are more than \$100,000.
The mean of aggregate payments is $18 \times 2400=\$ 43200$, and the variance is

$$
126 \times 2400^{2}+18 \times 7200000=881280000
$$

To get a Gamma distribution with the same mean and variance, we need $\theta=\frac{881280000}{43200}=20400$ and $\alpha=\frac{43200}{20400}=\frac{36}{17}$. The probability that aggregate payments exceed $\$ 1,000,000$ is therefore the probability that a gamma distribution with $\alpha=\frac{36}{17}$ and $\theta=20400$ exceeds 100,000 , which is 0.05129455 .
3. An insurance company models loss frequency as negative binomial with $r=4, \beta=3$, and loss severity as exponential with $\theta=\$ 4,500$. Calculate the expected aggregate payments if there is a policy limit of $\$ 50,000$ and a deductible of \$1,000 applied to each claim.

With the policy limit and deductible, the expected payment per loss is

$$
\int_{1000}^{50000} e^{-\frac{x}{4500}} d x=4500 \int_{\frac{2}{9}}^{\frac{100}{9}} e^{-u} d u=4500\left(e^{-\frac{2}{9}}-e^{-\frac{100}{9}}\right)=3603.251
$$

The expected number of losses is $4 \times 3=12$, so the expected aggregate payment is $12 \times 3603.251=\$ 43,239.01$.
4. Claim frequency follows a negative binomial distribution with $r=8$ and $\beta=1.7$. Claim severity (in thousands) has the following distribution:

| Severity | Probability |
| ---: | :--- |
| 1 | 0.5 |
| 2 | 0.3 |
| 3 | 0.15 |
| 4 | 0.03 |
| 5 | 0.015 |
| 6 | 0.004 |
| 7 | 0.0007 |

Use the recursive method to calculate the exact probability that aggregate claims are at least 8 .
The probability that aggregate claims are 0 is $\left(\frac{1}{2.7}\right)^{8}=0.0003540706$. For the negative binomial distribution we have $a=\frac{\beta}{1+\beta}, b=\frac{(r-1) \beta}{1+\beta}$. The recurrence is

$$
\begin{aligned}
f_{S}(x) & =\frac{\left(p_{1}-(a+b) p_{0}\right) f_{X}(x)+\sum_{y=1}^{x \wedge m}\left(a+\frac{b y}{x}\right) f_{X}(y) f_{S}(x-y)}{1-a f_{X}(0)} \\
& =\sum_{y=1}^{x \wedge m}\left(\frac{\beta}{1+\beta}+\frac{(r-1) \beta y}{(1+\beta) x}\right) f_{X}(y) f_{S}(x-y) \\
& =\frac{1.7}{2.7} \sum_{y=1}^{x}\left(1+\frac{7 y}{x}\right) f_{X}(y) f_{S}(x-y)
\end{aligned}
$$

This gives:

$$
\begin{aligned}
& f_{S}(0)=0.0003540706 \\
& f_{S}(1)=\frac{1.7}{2.7} \times 8 \times 0.5 \times 0.0003540706=0.0008917334 \\
& f_{S}(2)=0.0017983289 \\
& f_{S}(3)=0.0031091403 \\
& f_{S}(4)=0.0048001634 \\
& f_{S}(5)=0.0068795627 \\
& f_{S}(6)=0.0092934225 \\
& f_{S}(7)=0.0119757438
\end{aligned}
$$

R code:

```
fs <-rep (0, 8)
fs [1]<-0.0003540706
fx<-c(0.5,0.3,0.15,0.03,0.015,0.004,0.0007)
mat<-1+7*(1:7)%*%t (rep (1,7))/rep (1,7)%*%t (1:7)
newmat<-mat*fx%**%t(rep (1,7))
for(i in 1:7){
fs[i+1]<-t(fs[i:1])%*%(upper.tri(newmat, diag=TRUE)*newmat )[1:i, i ] * 1.7/2.7
}
sum(fs )
```

The total of these is 0.25989050 .03910217 , so the probability that aggregate claims are at least 8 is $1-0.03910217=0.96089783$.
5. Using an arithmetic distribution $(h=1)$ to approximate a Pareto distribution with $\alpha=4$ and $\theta=9$, calculate the probability that the value is between 2.5 and 6.5, for the approximation using:
(a) The method of rounding.

The method of rounding sets the probability $P(A=n)$ to $P(n-0.5 \leqslant$ $X<n+0.5$ ), so in this case,
$P(A \in\{3,4,5,6\})=P(2.5<X<6.5)=\left(\frac{9}{9+2.5}\right)^{4}-\left(\frac{9}{9+6.5}\right)^{4}=0.261458$
(b) The method of local moment matching, matching 1 moment on each interval.
On the interval, $\left[2 n-\frac{1}{2}, 2 n+\frac{3}{2}\right]$, for $n \geqslant 1$, the probability of the Pareto distribution is

$$
\frac{9^{4}}{\left(9+2 n-\frac{1}{2}\right)^{4}}-\frac{9^{4}}{\left(9+2 n+\frac{3}{2}\right)^{4}}
$$

while the conditional mean is

$$
\begin{aligned}
& 2 n-\frac{1}{2}+\frac{\left(\int_{-\frac{1}{2}}^{\frac{3}{2}} \frac{9^{4}}{(9+2 n+x)^{4}} d x-\frac{9^{4}}{\left(9+2 n+\frac{3}{2}\right)^{4}}\right)}{\left(\frac{9^{4}}{\left(9+2 n-\frac{1}{2}\right)^{4}}-\frac{9^{4}}{\left(9+2 n+\frac{3}{2}\right)^{4}}\right)} \\
& =2 n-\frac{1}{2}+\frac{\frac{1}{3}\left(\frac{1}{\left(9+2 n-\frac{1}{2}\right)^{3}}-\frac{1}{\left(9+2 n+\frac{3}{2}\right)^{3}}\right)-\frac{1}{\left(9+2 n+\frac{3}{2}\right)^{4}}}{\left(\frac{1}{\left(9+2 n-\frac{1}{2}\right)^{4}}-\frac{1}{\left(9+2 n+\frac{3}{2}\right)^{4}}\right)}
\end{aligned}
$$

If the probability is $\phi$ and the conditional mean is $\mu$, we match this by setting

$$
\begin{aligned}
p_{2 n}+p_{2 n+1} & =\phi \\
2 n p_{2 n}+(2 n+1) p_{2 n+1} & =\phi \mu \\
p_{2 n+1} & =\phi(\mu-2 n) \\
& =9^{4}\left(\frac{1}{3}\left(\frac{1}{\left(9+2 n-\frac{1}{2}\right)^{3}}-\frac{1}{\left(9+2 n+\frac{3}{2}\right)^{3}}\right)-\frac{2}{\left(9+2 n+\frac{3}{2}\right)^{4}}-\frac{1}{2}\left(\frac{1}{\left(9+2 n-\frac{1}{2}\right)}\right.\right.
\end{aligned}
$$

In particular, we get

$$
\begin{aligned}
p_{3} & =0.09647344 \\
p_{4} & =0.1202779 \\
p_{5} & =0.00003870591 \\
p_{6} & =0.05988173
\end{aligned}
$$

So the total probability is $0.0000763192+0.1202779+0.00003870591+$ $0.05988173=0.1802746$.

## Standard Questions

6. The number of claims an insurance company receives follows a negative binomial distribution with $r=46$ and $\beta=8.4$. Claim severity follows a negative binomial distribution with $r=14$ and $\beta=0.8$. Calculate the probability that aggregate losses exceed $\$ 4000$.
(a) Starting the recurrence 6 standard deviations below the mean.

The mean is $46 \times 8.4 \times 14 \times 0.8=4327.68$. The variance is $46 \times 8.4 \times$ $14 \times 0.8 \times 1.8+46 \times 8.4 \times 9.4 \times(14 \times 0.8)^{2}=463407.9744$, so the standard deviation is $\sqrt{463407.9744}=680.7408$. Six standard deviations below the mean is therefore $4327.68-6 \times 680.7408=243.2352$. We will therefore start the recurrence at $x=243$. We set $f(243)=1$ and $f(242)=0$. We then apply the recurrence

$$
\begin{aligned}
f_{S}(x) & =\frac{\left(p_{1}-(a+b) p_{0}\right) f_{X}(x)+\sum_{y=1}^{x \wedge m}\left(a+\frac{b y}{x}\right) f_{X}(y) f_{S}(x-y)}{1-a f_{X}(0)} \\
& =\frac{\left(\frac{8.4}{9.4}\right) \frac{1}{1.8^{14}} \sum_{y=1}^{x-243}\left(1+\frac{45 y}{x}\right)\binom{y+13}{y}\left(\frac{0.8}{1.8}\right)^{y} f_{S}(x-y)}{1-\frac{8.4}{9.4}\left(\frac{1}{1.8}\right)^{14}} \\
& =0.0002384734 \sum_{y=1}^{x-243}\left(1+\frac{45 y}{x}\right)\binom{y+13}{y}\left(\frac{0.8}{1.8}\right)^{y} f_{S}(x-y)
\end{aligned}
$$

R code:
$\mathrm{fs}<-\operatorname{rep}(0,10001)$
$\mathrm{fs}[1]=1$
$\mathrm{y}<-1$ : 10000
$\mathrm{fx}<-(\mathrm{y}+1) *(\mathrm{y}+2) *(\mathrm{y}+3) *(\mathrm{y}+4) *(\mathrm{y}+5) *(\mathrm{y}+6) *(\mathrm{y}+7) *(\mathrm{y}+8) *(\mathrm{y}+9) *(\mathrm{y}+10) *(\mathrm{y}+11) *(\mathrm{y}+$ $\mathrm{x}<-(1: 10000)+243$
$\operatorname{mat}<-1+45 *(y) \% * \% t(\operatorname{rep}(1,10000)) / \operatorname{rep}(1,10000) \% * \% t(x)$

```
newmat<-mat*fx%*%t( rep (1,10000))
utnewmat<-upper.tri(newmat, diag=TRUE)* newmat
for(i in 1:10000){
fs[1+i]<-(8.4/9.4/1.8^14)/(1-(8.4/9.4/1.8^14))*t(fs[i:1])%*%utnewmat[1:i,i]
}
a<-sum(fs )
fs<-fs /a
sum(fs[3759:10001])
```

This gives the probability of the aggregate loss exceeding 4000 as 0.6710699 .
(b) Using a suitable convolution.

If we convolve $n$ times, we the distributions to be convolved are compound negative binomial with $r=\frac{46}{n}, \beta=8.4$ and $r=14, \beta=0.8$. The pgf. of a negative binomial distribution is

$$
P(z)=(1-\beta(z-1))^{-r}
$$

The probability that the compound distribution is zero is therefore

$$
\left(1-8.4\left(1.8^{-14}-1\right)\right)^{-r}=9.397759^{-r}
$$

We want to choose $r$ so that this is large enough to avoid underflow. For convenience, we will choose to convolve 4 times, so that $r=11.5$. For $r=11.5$ in the primary distribution, we compute the compound distribution from 0 to 4000 using the standard recurrence.

R code:

```
fs <-rep (0,4001)
fs [1]=(9.4-8.4/1.8^14)^(-10.5)
y<-1:4000
fx<-(y+1)*(y+2)*(y+3)*(y+4)*(y+5)*(y+6)*(y+7)*(y+8)*(y+9)*(y+10)*(y+11)*(y+
x}<-(1:4000
mat<-1+(10.5*(y)%*%t (rep (1,4000))) / (rep (1,4000)%*%t(x))
newmat<-mat*(fx%%*%t (rep (1,4000)))
utnewmat<-upper.tri(newmat, diag=TRUE)*newmat
for(i in 1:4000){
fs[1+i}]<-(8.4/9.4/1.\mp@subsup{8}{}{\wedge}14)/(1-(8.4/9.4/1.\mp@subsup{8}{}{\wedge}14))*t(fs[i:1])%*%utnewmat[1:i,i ]
}
```

We then find the probabilities for values from 0 to 4000 by convolving this distribution with itself, then convolving the resulting distribution with itself.

R code:

```
ConvolveSelf<-function(n){
    convolution<-vector("numeric", 2*length(n))
    for(i in 1:(length(n))){
```

```
        convolution[i]<-sum(n[1:i]*n[i:1])
    }
    for(i in 1:(length(n))){
        convolution [2* length(n)+1-i]<- sum(n[length(n)+1-(1:i)]*n[length(n)+1-(i:
    }
    return(convolution)
}
fs 23<-ConvolveSelf(fs)
fs46<-ConvolveSelf(fs 23)
sum(fs46[1:4000])
```

This gives the probability that aggregate losses are at most 4000 as 0.3283725 , so the probability that aggregate losses exceed 4000 is 0.6716275 .

