ACSC/STAT 4703, Actuarial Models II

Fall 2015
Toby Kenney
Homework Sheet 3
Model Solutions

Basic Questions

1. An insurance company collects the following claim data (in thousands):

i	d_{i}	x_{i}	u_{i}	i	d_{i}	x_{i}	u_{i}	i	d_{i}	x_{i}	u_{i}
1	0	0.4	-	8	1.0	-	15	15	2.0	-	10
2	0	1.6	-	9	1.0	4.6	-	16	2.0	-	10
3	0	-	20	10	1.0	-	15	17	2.0	2.6	-
4	0	1.8	-	11	1.0	1.3	-	18	2.0	-	20
5	0	-	10	12	1.5	-	10	19	2.0	14.6	-
6	0.5	1.9	-	13	1.5	6.8	-	20	5.0	-	15
7	0.5	1.6	-	14	1.5	1.9	-	21	5.0	8.4	-

Using a Kaplan-Meier product-limit estimator:
(a) estimate the probability that a random loss exceeds 17.3.

x_{i}	s_{i}	r_{i}	$S\left(x_{i}\right)$
0.4	1	5	0.8
1.3	1	10	0.72
1.6	2	12	0.6
1.8	1	10	0.54
1.9	2	9	0.42
2.6	1	12	0.385
4.6	1	11	0.35
6.8	1	12	0.3208333
8.4	1	11	0.2916667
14.6	1	6	0.24305556

So the estimated survival probability is 0.24305556 .
(b) estimate the median of the distribution.

From the above table, we see that the survival probability is 0.54 from 1.8 to 1.9 , but 0.42 from 1.9 to 2.6 , so the median is 1.9 .
(c) Use a Nelson-Aalen estimator to estimate the median of the distribution.

The Nelson-Åalen estimator is an estimator for the cumulative hazard rate. That is $H(x)=-\log (S(x))$. The median is the solution to $S(x)=\frac{1}{2}$, which gives $H(x)=-\log \left(\frac{1}{2}\right)=\log (2)=0.6931472$. We therefore need to adapt the table from part (a) to calculate the cumulative hazard rate, and find the value where it first exceeds 0.6931472 .

x_{i}	s_{i}	r_{i}	$H\left(x_{i}\right)$
0.4	4	5	0.2
1.3	9	10	0.3
1.6	10	12	0.4667
1.8	9	10	0.5667
1.9	7	9	0.7889

So again 1.9 is the estimate for the median.
2. An insurance company observes the following claim history:

Number of claims	Frequency
0	2,846
1	701
2	360
3	202
4	114
5	56
6	12
7	0
8	2

Use a Nelson-Åalen estimate to obtain a 95\% confidence interval for the probability that a random individual makes more than 5 claims.
A Nelson-Åalen estimate gives $H(5)=\frac{2846}{4293}+\frac{701}{1447}+\frac{360}{746}+\frac{202}{386}+\frac{114}{184}+\frac{56}{70}=3.572845$.
The variance of this estimator is approximately $\frac{2846}{4293^{2}}+\frac{701}{1447^{2}}+\frac{360}{746^{2}}+\frac{202}{386^{2}}+\frac{114}{184^{2}}+\frac{56}{70^{2}}=0.01728762$ A 95% confidence interval is therefore
$H(x) \in 3.572845 \pm 1.96 \sqrt{0.01728762}=[3.315144,3.830546]$.
The corresponding interval for the survival function is

$$
S(x) \in\left[e^{-3.830546}, e^{-3.315144}\right]=[0.02169777,0.03632882]
$$

3. For the data in Question 1, use Greenwood's approximation to obtain a 95% confidence interval for the probability that a random loss exceeds 17.3, based on the Kaplan-Meier estimator.
(a) Using a normal approximation

Recall from Question 1, that the estimated survival function is $S(17.3)=0.24305556$. The variance of the Kaplan-Meier estimator is
$0.24305556^{2}\left(\left(1+\frac{1-0.8}{5 \times 0.8}\right)\left(1+\frac{0.8-0.72}{10 \times 0.72}\right)\left(1+\frac{0.72-6}{12 \times 0.6}\right)\left(1+\frac{0.6-0.54}{10 \times 0.54}\right)\left(1+\frac{0.54-0.42}{9 \times 0.42}\right)\left(1+\frac{0.42-0.385}{12 \times 0.385}\right)\left(1+\frac{0.385-0.35}{11 \times 0.35}\right)\left(1+\frac{0.35-0}{12 \times 0 .}\right.\right.$ 0.01198086

The confidence interval is therefore $0.24305556 \pm 1.96 \sqrt{0.01198086}=[0.02852356,0.45758756]$.
Using Greenwood's approximation for the product, the variance of the Kaplan-Meier estimator is
$0.24305556^{2}\left(\frac{1}{5 \times 4}+\frac{1}{10 \times 9}+\frac{2}{12 \times 10}+\frac{1}{10 \times 9}+\frac{2}{9 \times 7}+\frac{1}{12 \times 11}+\frac{1}{11 \times 10}+\frac{1}{12 \times 11}+\frac{1}{11 \times 10}+\frac{1}{6 \times 5}\right)=0.01106503$
which gives a confidence interval of [0.03688607, 0.44922505].
(b) Using a log-transformed confidence interval.

Using the product formula, we have $U=e^{\frac{1.9 \sqrt{0.01198086}}{0.24305566 \log (0.2430556)}}=0.5357895$, and the confidence interval is $\left[0.24305556^{\frac{1}{U}}, 0.24305556^{U}\right]=[0.07136381,0.46867036]$.
Using the variance from Greenwood's approximation, we have $U=e^{\frac{1.96 \sqrt{0.01106503}}{0.24305566 \log (0.24305556)}}=0.548982$, and the confidence interval is $\left[0.24305556^{\frac{1}{U}}, 0.24305556^{U}\right]=[0.07603786,0.46000591]$.
4. An insurance company records the following data in a mortality study:

entry	death	exit	entry	death	exit	entry	death	exit
60.4	-	64.4	61.6	-	64.2	62.1	-	63.9
62.7	-	63.7	60.8	-	63.8	62.9	-	64.5
63.4	-	64.4	64.3	-	66.3	61.8	63.7	-
61.2	-	63.2	63.3	-	66.3	60.2	60.6	-
62.2	-	65.2	62.8	-	64.8	63.8	65.2	-
60.9	-	62.9	61.3	-	63.3	62.1	63.4	-
63.0	-	65.6	62.1	-	65.1			

Estimate the probability of an individual currently aged exactly 63 dying within the next year using:
(a) the exact exposure method.

Using the exact exposure, the total exposure for lives currently aged 63 is $1+0.7+0.6+0.2+1+0+1+$ $1+0.8+0+0.7+1+0.3+1+0.9+1+0.7+0+0.2+0.4=12.5$. The number of deaths aged 63 is 2 , so the hazard rate is $\frac{2}{12.5}=0.16$. The probability of dying aged 63 is therefore $1-e^{-0.16}=0.1478562$.
(b) the actuarial exposure method.

Using the actuarial exposure method, the exposure is $1+0.7+0.6+0.2+1+0+1+1+0.8+0+0.7+1+$ $0.3+1+0.9+1+1+0+0.2+1=13.4$. The number of deaths aged 63 is 2 , so the mortality probability is $\frac{2}{13.4}=0.1492537$.

Standard Questions

5. An insurance company collects the following claim data (in thousands):

i	d_{i}	x_{i}	u_{i}	i	d_{i}	x_{i}	u_{i}	i	d_{i}	x_{i}	u_{i}
1	0	0.7	-	8	1.0	-	20	15	2.0	4.1	-
2	0	1.3	-	9	1.0	4.2	-	16	2.0	-	15
3	0	-	10	10	1.0	-	10	17	2.0	2.9	-
4	0	11.8	-	11	1.0	1.5	-	18	2.0	8.6	-
5	0.5	-	15	12	1.0	-	10	19	5.0	-	10
6	0.5	-	15	13	1.5	4.8	-	20	5.0	-	15
7	1.0	3.6	-	14	1.5	2.9	-	21	5.0	18.4	-

It is attempting to price a new policy with a deductible of 1.0. Using a Kaplan-Meier estimator, calculate the probability that a random claim on a policy with a deductible of 1.0 exceeds 5.0.

We have the following table. (Since we are calculating the conditional survival, we do not need to consider claim values less than 1.0.

x_{i}	s_{i}	r_{i}	$S_{1}\left(x_{i}\right)$
1.3	1	11	0.909
1.5	1	10	0.818
2.9	2	15	0.709
3.6	1	13	0.655
4.1	1	12	0.6
4.2	1	11	0.545
4.8	1	10	0.491

so the probability is 0.4909 [or $\frac{27}{55}$].
6. An insurance company has historical data from 2,861 claims. It finds that 1,830 are less than $\$ 5,000,793$ are between \$5,000 and \$20,000, 168 are between \$20,000 and \$100,000, and the remaining 70 are more than $\$ 100,000$. Calculate a 95% confidence interval for the probability that a random claim is more than $\$ 30,000$.
The empirical estimates are $F_{n}(20000)=\frac{2623}{2861}$ and $F_{n}(100000)=\frac{2791}{2861}$, so the ogive gives

$$
F_{n}(30000)=\frac{70000}{80000} \times \frac{2623}{2861}+\frac{100000}{80000} \times \frac{2791}{2861}=\frac{2644}{2861}
$$

The variance of $F_{n}(20000)$ is $\frac{2623 \times 238}{2861^{3}}$ and the variance of $F_{n}(100000)-F_{n}(20000)$ is $\frac{168 \times 2693}{2861^{3}}$, and the covariance is $-\frac{168 \times 2623}{2863}$, so the variance of $F_{n}(20000)+\frac{1}{8}\left(F_{n}(100000)-F_{n}(20000)\right)$ is $\frac{2623 \times 238}{2861^{3}}+\frac{1}{64} \times$ $\frac{168 \times 2693}{2861^{3}}-\frac{2}{8} \times \frac{168 \times 2623}{2861^{3}}=\frac{4085481}{8 \times 2861^{3}}$
The confidence interval for $F_{n}(30000)$ is therefore $\frac{2644}{2861} \pm 1.96 \sqrt{\frac{4085481}{8 \times 2861^{3}}}=[0.9149996,0.9333052]$ so the confidence interval for $S_{n}(30000)$ is [0.06669477, 0.08500045].
7. An insurance company observes the following claims (in thousands):

$$
\begin{array}{lllllllllllll}
0.8 & 2.3 & 5.7 & 4.2 & 11.6 & 8.7 & 3.0 & 7.4 & 1.5 & 15.2 & 9.3 & 2.5 & 3.8
\end{array}
$$

using a kernel density estimate with a triangular kernel with bandwidth 1, estimate the expected loss per claim if the company introduces a deductible of 2.0 on each policy.
We sort the sample to get

```
0.8 1.5 2.3 2.5 3.0 3.8 4.2 5.7 7.4 8.7 9.3 11.6 15.2
```

Under the kernel density distribution, the probability that a random loss exceeds 2.0 is $\frac{0+0.125+0.755+0.875+1+1+1+1+1+1+1+1+1}{13}=$ $\frac{10.755}{13}=0.8273$
The conditional expected loss of a claim given that the claim exceeds 2.0 is therefore

```
\(\frac{\int_{2}^{2.5} x(2.5-x) d x+\int_{2}^{2.3} x(x-1.3) d x+\int_{2.3}^{3.3} x(3.3-x) d x+\int_{2}^{2.5} x(x-1.5) d x+\int_{2.5}^{3.5} x(3.5-x) d x+69.9}{10.755}\)
\(=\frac{69.9+1.25\left(2.5^{2}-2^{2}\right)-\frac{2.5^{3}-2^{3}}{3}+\frac{2.3^{3}-2^{3}}{3}-0.65\left(2.3^{2}-2^{2}\right)+3.3\left(3.3^{2}-2.3^{2}\right)-\frac{3.3^{3}-2.3^{3}}{3}+\frac{2.5^{3}-2^{3}}{3}-0.75\left(2.5^{2}-2^{2}\right)+1.75\left(3.5^{2}-2.5^{2}\right)-\frac{3.5^{3}-2.5^{3}}{3}}{10.755}\)
\(=\frac{69.9+1.25 \times 2.25-\frac{7.625}{3}+\frac{4.167}{3}-0.65 \times 1.29+3.3 \times 5.6-\frac{23.77}{3}+\frac{7.625}{3}-0.75 \times(2.25)+1.75 \times 6-\frac{27.25}{3}}{10.755}\)
\(=\frac{69.9+2.8125-0.8385+18.48-1.6975+10.5+\frac{4.167}{3}-\frac{23.77}{3}-\frac{27.25}{3}}{10.755}\)
\(=\frac{99.1565+-\frac{46.853}{3}}{10.755}\)
\(=7.767442\)
```

