ACSC/STAT 4703, Actuarial Models II
 Fall 2015
 Toby Kenney
 Homework Sheet 7
 Model Solutions

Basic Questions

1. An insurance company sets the book pure premium for its car insurance premium at $\$ 836$. The expected process variance is 342,017 and the variance of hypothetical means is 86,202. If an individual has no claims over the last 6 years, calculate the credibility premium for this individual's next year's insurance using the Bühlmann model.
The Bühlmann credibility is $Z=\frac{6}{6+\frac{342017}{86202}}=0.601949$, so next year's premium is $0.601949 \times 0+836 \times$ $(1-0.601949)=\$ 332.77$.
2. An insurance company has the following data on a group life insurance policy:

Year	1	2	3	4	5	6
No. insured	1,204	1,320	972	1,504	1,670	1,583
No. of deaths	8	3	7	9	11	10

The average mortality rate for the population is 1 death per 100 policies per year. The variance of hypothetical means of deaths per policy is 0.0014. Using a Bühlmann-Straub model, calculate the credibility premium for this group insurance for Year 7.
The variance of hypothetical means is 0.0014 . The number of deaths per policy is a Bernoulli random variable where p has mean 0.01 and variance 0.0014 , so the variance conditional on p is $p(1-p)$, so the expected process variance is the expected value of $p-p^{2}$. The expected value of p is 0.01 , and the expected value of p^{2} is $0.0014+0.01^{2}=0.0015$. The expected process variance is therefore $0.01-0.0015=0.0085$. The credibility is therefore $\frac{8253}{8253+\frac{0.0085}{0.0014}}=0.9992649$.
The expected number of deaths per year is therefore $0.9992649 \times \frac{48}{8253}+0.0007351 \times 0.01=0.005819143$.
3. An insurance company has the following previous data on aggregate claims:

Policyholder	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Mean	Variance
1	0	445	0	0	877	1,198	420	268791.6
2	916	1,533	777	0	0	1,487	785.5	460396.3
3	709	0	0	1,275	924	0	484.6667	314534.3
4	1,910	2,004	3,723	714	1,410	422	1697.167	1383715.4
5	0	927	0	0	0	0	153.5	143221.5

Calculate the Bühlmann credibility premium for each policyholder in Year 7.
The expected process variance is $\frac{268791.6+460396.3+314534.3+1383715.4+143221.5}{5}=514131.8$. The mean claim amount is $\frac{420+785.5+484.6667+1697.167+153.5}{5}=708.1667$, so the variance of observed means is $\frac{(420-708.1667)^{2}+(785.5-708.1667)^{2}+(484.6667-708.1667)^{2}+(1697.167-708.1667)^{2}+(153.5-708.1667)^{2}}{4}=356187.2$

Since the average conditional variance of observed means is the EPV divided by 6, the VHM is $356187.2-$ $\frac{514131.8}{6}=270498.6$
The Bühlmann credibility is therefore $Z=\frac{6}{6+\frac{514131.8}{270498.6}}=0.7594281$. The credibility premiums are therefore

$$
\begin{aligned}
0.7594281 \times 420+0.2405719 \times 708.16667 & =\$ 489.32 \\
0.7594281 \times 785.5+0.2405719 \times 708.16667 & =\$ 766.90 \\
0.7594281 \times 484.6667+0.2405719 \times 708.16667 & =\$ 538.43 \\
0.7594281 \times 1697.167+0.2405719 \times 708.16667 & =\$ 1,459.24 \\
0.7594281 \times 153.5+0.2405719 \times 708.16667 & =\$ 286.94
\end{aligned}
$$

4. Over a three-year period, an insurance company observes the following numbers of claims:

No. of claims	Frequency
0	3,935
1	4,108
2	1,420
3	637
4	211
5	94
6	40
7	15
8	4
9	0
10	1

Some customers only had a two-year claim history. Claim frequencies for these customers were:

No. of claims	Frequency
0	670
1	482
2	289
3	104
4	38
5	9
6	2
7	1

Assuming the number of claims made by an individual in a year follows a Poisson distribution, calculate the credibility estimate for the expected claim frequency in the following year, of an individual who has made a total of 4 claims in the past 2 years.
The total number of claims observed is
$(4108+482) \times 1+(1420+289) \times 2+(637+104) \times 3+(211+38) \times 4+(94+9) \times 5+(40+2) \times 6+$ $(15+1) \times 7+4 \times 8+1 \times 10=12148$
The number of years observed is
$(3935+4108+1420+637+211+94+40+15+4+1) \times 3+(670+482+289+104+38+9+2+1) \times 2=34585$
The average number of claims per year is therefore $\frac{12148}{34585}=0.3512505$.
Since the variance of a Poisson distribution is equal to the mean, this means that the expected process variance is also 0.3512505 .
We calculate the total variance of average number of claims per year per person as:
$\frac{1}{12059}\left(3935(0-0.3512505)^{2}+4108\left(\frac{1}{3}-0.3512505\right)^{2}+1420\left(\frac{2}{3}-0.3512505\right)^{2}+637(1-0.3512505)^{2}+211\left(\frac{4}{3}-0.3512505\right)^{2}\right.$ 0.1643035
[This is the variance per individual, not per policy-year. Per policy-year the variance is 0.1568069.]
The expected process variance of the mean for individuals with a 3 -year history is $\frac{0.3512505}{3}=0.1170835$.
For the individuals with two-year histories, the expected process variance for the mean is $\frac{0.3512505}{2}=$ 0.1756253 . The overall variance due to Poisson sampling is therefore $10465 \times 0.1170835+1595 \times 0.175625312060=$ 0.1248257 . This means the estimated VHM is $0.1643035-0.1248257=0.0394778$.

The credibility of an individual with two years past history is therefore $Z=\frac{2}{2+\frac{0.3512505}{0.0394778}}=0.1835297$. The expected claim frequency is therefore $2 \times 0.1835297+0.3512505 \times 0.8164703=0.653845$.
Using per policy-year, the Poisson variance is $0.3512505 \times 12060 / 34585=0.1224832$, so the VHM is $0.1568069-0.1224832=0.0343237$. This means the credibility of an individual with two years past history is therefore $Z=\frac{2}{2+\frac{0.3512505}{0.0333237}}=0.1634859$. The expected claim frequency is therefore $2 \times 0.1634859+$ $0.3512505 \times 0.8365141=0.6207978$.
[Technically, since we calculated the mean per policy-year, the per-policy year approach is more correct.]

Standard Questions

5. Aggregate claims for a given insurance policy are modelled as following a log-normal, and experience indicates that $\sigma=1$ is the correct value. The first 4 years of experience on this policy are:

Policyholder	Year 1	Year 2	Year 3	Year 4
1	970	221	703	366
2	282	392	2934	1372
3	213	631	339	551
4	54	2383	252	647

(a) Estimate the EPV and VHM based on the MLE estimates for each μ. [For a log-normal the MLE is $\hat{\mu}=\frac{\sum_{i=1}^{n} \log \left(X_{i}\right)}{n}$.]
The MLE estimates are

$$
\begin{aligned}
\frac{\log (970)+\log (221)+\log (703)+\log (366)}{4} & =6.183362 \\
\frac{\log (282)+\log (392)+\log (2934)+\log (1372)}{4} & =6.705329 \\
\frac{\log (213)+\log (631)+\log (339)+\log (551)}{4} & =5.986583 \\
\frac{\log (54)+\log (2383)+\log (252)+\log (647)}{4} & =5.941719
\end{aligned}
$$

The mean of a log-normal is $e^{\mu+\frac{1}{2} \sigma^{2}}$, and the variance is $e^{2 \mu+2 \sigma^{2}}-e^{2 \mu+\sigma^{2}}=e^{2 \mu+\sigma^{2}}\left(e^{\sigma^{2}}-1\right)$.
This gives that the EPV is $(e-1) \frac{e^{13.366724}+e^{14.410658}+e^{12.973166}+e^{12.883438}}{4}=1407332$. The mean is $\frac{e^{6.683362}+e^{7.205329}+e^{6.486583}+e^{6.441719}}{\left(e^{6.683362}-857.3375\right)^{2}+\left(e^{7.205329}-857.3375\right)^{2}+\left(e^{6.486583}-857.3375\right)^{2}+\left(e^{6.441719}-857.3375\right)^{2}}$ 857.3375 while the variance of estimated means is $\frac{\left(e^{6.683362}-857.3375\right)^{2}+\left(e^{7.205329}-857.3375\right)^{2}+\left(e^{6.486583}-857.3375\right)^{2}+\left(e^{6.441719}-857.3375\right)^{2}}{3}=$
112008.9. For a log-normal distribution with known $\sigma=1$, the estimate $\hat{\mu}$ is normally distributed with mean μ and variance $\frac{\text { sigma }}{4}$ (since it is the mean of the logarithms of the observed values). The estimated mean of the log-normal distribution is $e^{\hat{\mu}+\frac{1}{2}}$, so the variance of this is $\mathbb{E}\left(\left(e^{\hat{\mu}+\frac{1}{2}}\right)^{2}\right)-\mathbb{E}\left(e^{\hat{\mu}+\frac{1}{2}}\right)^{2}$. From the variance for a log-normal (or the mgf of the normal distribution), we have $\mathbb{E}\left(\left(e^{\hat{\mu}+\frac{1}{2}}\right)^{2}\right)=e^{2 \mu+1+\frac{1}{2}}$ and $\mathbb{E}\left(e^{\hat{\mu}+\frac{1}{2}}\right)^{2}=e^{2\left(\mu+\frac{1}{2}+\frac{1}{8}\right)}=e^{2 \mu+\frac{5}{4}}$. The variance is therefore $e^{2 \mu}\left(e^{\frac{3}{2}}-e^{\frac{5}{4}}\right)$. In particular, the estimated variances for the means for each policyholder are:
Policyholder $1 \quad e^{2 \times 6.183362}\left(e^{\frac{3}{2}}-e^{\frac{5}{4}}\right)=232822.7$
Policyholder $2 \quad e^{2 \times 6.705329}\left(e^{\frac{3}{2}}-e^{\frac{5}{4}}\right)=661302.4$
Policyholder $3 \quad e^{2 \times 5.986583}\left(e^{\frac{3}{2}}-e^{\frac{5}{4}}\right)=157074.3$
Policyholder $4 \quad e^{2 \times 5.941719}\left(e^{\frac{3}{2}}-e^{\frac{5}{4}}\right)=143594.2$
The VHM is therefore $112008.9-\left(\frac{232822.7+661302.4+157074.3+143594.2}{4}\right)=$
(b) Calculate the credibility premium for policyholder 3 in the next year.

The credibility of 4 years of experience is therefore $Z=\frac{4}{4+\frac{1407322}{112008.9}}=0.2414808$. The credibility premium is therefore $0.2414808 \times e^{6.486583}+0.7585192 \times 857.3375=\$ 808.79$.
6. Claim frequency in a year for an individual follows a Poisson with parameter Λt where Λ is the individual's risk factor and t is the individual's exposure in that year. An insurance company collects the following data:

	Year 1		Year 2		Year 3		Year 4	
Policyholder	Exp	claims	Exp	claims	Exp	claims	Exp	claims
1	45	12	10	6	45	14	14	2
2	27	0	12	0	74	0	27	0
3	10	9	293	149	14	6	13	5
4	10	0	14	3	17	2	6	2

In year 5, policyholder 3 has 64 units of exposure. Calculate the credibility estimate for claim frequency for policyholder 3.

The total exposure is $45+10+45+14+27+12+74+27+10+293+14+13+10+14+17+6=631$ units.
The means for each individual are: $\frac{34}{114}=0.2982456, \frac{0}{140}=0, \frac{169}{330}=0.5121212$, and $\frac{7}{47}=0.1489362$. The average value of λ is therefore $\frac{0.2982456+0+0.5121212+0.1489362}{4}=0.2398258$, so this is the expected process variance, because the variance of a Poisson distribution is equal to the mean.
Suppose the hypothetical means are $\lambda_{1}, \lambda_{2}, \lambda_{3}$, and λ_{4}, and the overall mean is $\lambda=\frac{\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}}{4}$. The variance of means is $\frac{\left(\lambda_{1}-\lambda\right)^{2}+\left(\lambda_{2}-\lambda\right)^{2}+\left(\lambda_{3}-\lambda\right)^{2}+\left(\lambda_{4}-\lambda\right)^{2}}{3}$, We estimate this as
$\frac{(0.2982456-0.2398258)^{2}+(0-0.2398258)^{2}+(0.5121212-0.2398258)^{2}+(0.1489362-0.2398258)^{2}}{3}=0.04777833$
However, this estimate also includes the variance of each estimate for λ_{i}. The variance if the total exposure is n_{i} is $\frac{\lambda_{i}}{\sqrt{n_{i}}}$, so the total variance due to process variance is

$$
\frac{0.2982456}{16 \sqrt{114}}+0+\frac{0.2982456}{16 \sqrt{330}}+\frac{0.2982456}{16 \sqrt{47}}=0.004865574
$$

The VHM is therefore $0.04777833-0.004865574=0.04291276$.
The credibility for an individual with 330 units of exposure is therefore $\frac{330}{330+\frac{0.2398258}{0.04291276}}=0.9833466$
The credibility estimate for λ_{3} is therefore $0.9833466 \times 0.5121212+0.0166534 \times 0.2398258=0.5075866$.

