ACSC/STAT 4703, Actuarial Models II

Fall 2016
Toby Kenney
Homework Sheet 3
Due: Friday 14th October: 10:30 PM

Basic Questions

1. An insurance company collects the following claim data (in thousands):

i	d_{i}	x_{i}	u_{i}	i	d_{i}	x_{i}	u_{i}	i	d_{i}	x_{i}	u_{i}
1	0	0.6	-	8	0.5	5.6	-	15	2.0	2.5	-
2	0	1.3	-	9	1.0	2.8	-	16	2.0	3.9	-
3	0	2.7	-	10	1.0	4.6	-	17	2.0	6.6	-
4	0	-	10	11	1.0	7.7	-	18	2.0	10.4	-
5	0	-	10	12	1.0	11.3	-	19	2.0	-	15
6	0.5	0.9	-	13	1.0	-	10	20	5.0	7.3	-
7	0.5	1.4	-	14	1.5	3.9	-	21	5.0	8.4	-

Using a Kaplan-Meier product-limit estimator:
(a) estimate the probability that a random loss exceeds 10.7.
(b) estimate the median of the distribution.
(c) Use a Nelson- $\AA a l e n$ estimator to estimate the median of the distribution.
2. An insurance company observes the following claim history:

Number of claims	Frequency
0	2089
1	1810
2	799
3	226
4	60
5	14
6	2

Use a Nelson-Åalen estimate to obtain a 95% confidence interval for the probability that a random individual makes more than 4 claims.
3. For the data in Question 1, use Greenwood's approximation to obtain a 95% confidence interval for the probability that a random loss exceeds 10.7, based on the Kaplan-Meier estimator.
(a) Using a normal approximation
(b) Using a log-transformed confidence interval.
4. An insurance company records the following data in a mortality study:

entry	death	exit	entry	death	exit	entry	death	exit
70.2	-	73.3	70.4	-	71.3	71.5	-	71.9
68.5	-	72.3	68.7	71.4	-	70.6	-	72.5
70.9	71.1	-	68.2	-	73.5	69.4	-	73.5
71.4	-	72.4	68.1	-	72.2	70.2	-	74.3
69.9	71.9	-	68.4	-	72.5	69.4	-	72.2
70.1	-	72.6	71.5	-	72.2	70.0	-	72.1
68.7	-	74.2	70.9	71.1	-	70.2	-	72.4
68.8	-	71.4	71.4	-	74.6	69.6	-	73.7
68.4	-	71.2	69.1	-	71.3	70.6	-	73.4
68.3	-	71.7						

Estimate the probability of an individual currently aged exactly 71 dying within the next year using:
(a) the exact exposure method.
(b) the actuarial exposure method.
5. An insurance company observes the following claims (in thousands):

$$
\begin{array}{lllllllllllll}
2.5 & 2.9 & 2.9 & 3.6 & 3.8 & 4.0 & 4.1 & 4.8 & 5.1 & 5.2 & 5.9 & 6.0 & 6.7 \\
7.8 & 8.4
\end{array}
$$

using a kernel density estimate with a uniform kernel with bandwidth 2, estimate the expected loss per claim if the company introduces a deductible of 2.0 on each policy.
6. Using the following table:

Age	No. at start	enter	die	leave	No. at next age
61	0	5	2	1	2
62	2	6	0	4	4
63	4	7	1	0	10
64	10	2	0	8	4
65	4	6	2	6	2
66	2	7	0	9	0

Estimate the probability that an individual aged 62 withdraws from the policy within the next year, conditional on surviving to the end of the year.

Standard Questions

7. An insurance company collects the following claim data (in thousands):

i	d_{i}	x_{i}	u_{i}	i	d_{i}	x_{i}	u_{i}	i	d_{i}	x_{i}	u_{i}
1	0.0	0.1	-	9	1.0	1.8	-	17	2.0	3.6	-
2	0.0	0.7	-	10	1.0	2.2	-	18	2.0	6.4	-
3	0.0	1.8	-	11	1.0	2.6	-	19	2.0	9.6	-
4	0.0	-	5	12	1.0	11.3	20	20	2.0	-	15
5	0.5	-	10	13	1.0	-	20	21	5.0	5.3	-
6	0.5	-	20	14	1.5	4.5	-	22	5.0	7.5	-
7	0.5	-	10	15	1.5	-	20	23	5.0	8.5	-
8	1.0	1.6	-	16	2.0	2.4	-	24	5.0	-	10

It is attempting to choose a deductible for a new policy. The company has set the policy limit to 12.0 . Customer satisfaction surveys have shown that at most 20% of claims should exceed the policy limit. Using a KaplanMeier product limit estimator, find the largest deductible they can apply while still meeting this criterion.

