ACSC/STAT 4703, Actuarial Models II
 Fall 2016
 Toby Kenney
 Homework Sheet 4
 Model Solutions

Basic Questions

1. An insurance company models number of claims an individual makes in a year as following a negative binomial distribution with $\beta=2.1$, and R an unknown parameter with prior distribution a gamma distribution with $\alpha=4$ and $\theta=0.01$.
(a) What is the probability that a random individual makes exactly 4 claims?

The probability that an individual with parameter R makes exactly 4 claims is

$$
\binom{R+3}{4}\left(\frac{1}{1+\beta}\right)^{R}\left(\frac{\beta}{1+\beta}\right)^{4}
$$

The marginal probability of an individual making exactly 4 claims is found by integrating this over R :

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{10^{8} r^{3} e^{-100 r}}{6}\binom{r+3}{4}\left(\frac{1}{3.1}\right)^{r}\left(\frac{2.1}{3.1}\right)^{4} d r \\
= & \frac{10^{8}}{6 \times 24}\left(\frac{2.1}{3.1}\right)^{4} \int_{0}^{\infty} r^{4}(r+1)(r+2)(r+3) e^{-(100+\log (3.1)) r} d r \\
= & \frac{10^{8}}{6 \times 24}\left(\frac{2.1}{3.1}\right)^{4} \int_{0}^{\infty}\left(r^{7}+6 r^{6}+11 r^{5}+6 r^{4}\right) e^{-(100+\log (3.1)) r} d r \\
= & \frac{10^{8}}{6 \times 24}\left(\frac{2.1}{3.1}\right)^{4}\left(\frac{7!}{(100+\log (3.1))^{8}}+\frac{6 \times 6!}{(100+\log (3.1))^{7}}+\frac{11 \times 5!}{(100+\log (3.1))^{6}}+\frac{6 \times 4!}{(100+\log (3.1))^{5}}\right) \\
= & 0.002177018
\end{aligned}
$$

(b) The company now observes the following claim frequencies:

Number of claims	Frequency
0	36
1	27
2	15
3	5
4	2
5	1

What is the probability that $R>0.4$? [You may use numerical integration to calculate this.]
The likelihood of the data given $R=r$ is

$$
\frac{1}{3.1^{86 r}}\left(\frac{2.1}{3.1}\right)^{27+15 \times 2+5 \times 3+2 \times 4+1 \times 5}\binom{r}{1}^{27}\binom{r+1}{2}^{15}\binom{r+2}{3}^{5}\binom{r+3}{4}^{2}\binom{r+4}{5}
$$

This is proportional to

$$
\frac{r^{50}(r+2)^{23}(r+3)^{8}(r+4)^{3}(r+5)^{1}}{3.1^{86 r}}
$$

The posterior distribution is therefore proportional to

$$
e^{-100 r} \frac{r^{53}(r+2)^{23}(r+3)^{8}(r+4)^{3}(r+5)}{3.1^{86} r}
$$

The probability that $R>0.4$ is therefore

$$
\frac{\int_{0.6}^{\infty} e^{-(100+86 \log (3.1)) r} r^{53}(r+1)^{23}(r+2)^{8}(r+3)^{3}(r+4)}{\int_{0}^{\infty} e^{-(100+86 \log (3.1)) r} r^{53}(r+1)^{23}(r+2)^{8}(r+3)^{3}(r+4)}=0.01901318
$$

where the integrals were performed numerically.
(c) Calculate the predictive probability that this individual makes 5 claims next year. [You may use numerical integration to calculate this.]
The posterior density of R is proportional to

$$
e^{-100 r} \frac{r^{53}(r+1)^{23}(r+2)^{8}(r+3)^{3}(r+4)}{3.1^{86 r}}
$$

so the posterior probability that the individual makes 5 claims next year is

$$
\begin{aligned}
& \frac{\left(\frac{2.1}{3.1}\right)^{5} \int_{0}^{\infty} 3.1^{-r}\binom{r+4}{5} e^{-100 r} 3.1^{-86 r} r^{53}(r+1)^{23}(r+2)^{8}(r+3)^{3}(r+4) d r}{\int_{0}^{\infty} e^{-100 r} 3.1^{-86 r} r^{53}(r+1)^{23}(r+2)^{8}(r+3)^{3}(r+4) d r} \\
= & \left(\frac{2.1^{5}}{5!3.1^{5}}\right) \frac{\int_{0}^{\infty} e^{-100 r} 3.1^{-87 r} r^{54}(r+1)^{24}(r+2)^{9}(r+3)^{4}(r+4)^{2} d r}{\int_{0}^{\infty} e^{-100 r} 3.1^{-86 r} r^{53}(r+1)^{23}(r+2)^{8}(r+3)^{3}(r+4) d r} \\
= & 0.01115985
\end{aligned}
$$

Where the integral was calculated numerically.
2. An insurance company models loss sizes as following a Gamma distribution with $\alpha=3$, and finds that the posterior distribution for Θ is an exponential distribution with $\theta=1400$. Calculate the Bayes estimate for Θ based on a loss function:
(a) $l(\hat{\theta}, \theta)=(\hat{\theta}-\theta)^{2}$

We are trying to choose $\hat{\theta}$ to minimise

$$
\mathbb{E}\left((\hat{\theta}-\theta)^{2}\right)=\hat{\theta}^{2}-2 \hat{\theta} \mathbb{E}(\theta)+\mathbb{E}\left(\theta^{2}\right)
$$

For the exponential distribution, we have

$$
\begin{aligned}
\mathbb{E}(\theta) & =1400 \\
\mathbb{E}\left(\theta^{2}\right) & =2 \times 1400^{2} \\
\mathbb{E}\left(\theta^{3}\right) & =6 \times 1400^{3} \\
\mathbb{E}\left(\theta^{4}\right) & =24 \times 1400^{4}
\end{aligned}
$$

So we want to minimise $\hat{\theta}^{2}-2800 \hat{\theta}+3920000$. This is maximised by $\hat{\theta}=1400$.
(b) $l(\hat{\theta}, \theta)=(\hat{\theta}-\theta)^{4}$

We are trying to choose $\hat{\theta}$ to minimise

$$
\begin{aligned}
\mathbb{E}\left((\hat{\theta}-\theta)^{4}\right) & =\hat{\theta}^{4}-4 \hat{\theta}^{3} \mathbb{E}(\theta)+6 \hat{\theta}^{2} \mathbb{E}\left(\theta^{2}\right)-4 \hat{\theta} \mathbb{E}\left(\theta^{3}\right)+\mathbb{E}\left(\theta^{4}\right) \\
& =\hat{\theta}^{4}-4 \times 1400 \hat{\theta}^{3}+12 \times 1400^{2} \hat{\theta}^{2}-24 \times 1400^{3} \hat{\theta}+24 \times 1400^{4} \\
& =1400^{4}\left(\left(\frac{\hat{\theta}}{1400}\right)^{4}-4\left(\frac{\hat{\theta}}{1400}\right)^{3}+12\left(\frac{\hat{\theta}}{1400}\right)^{2}-24\left(\frac{\hat{\theta}}{1400}\right)+24\right)
\end{aligned}
$$

This is minimised by $\frac{\hat{\theta}}{1400}$ is the solution to $4 r^{3}-12 r^{2}+24 r-24=0$, or equivalently $r^{3}-3 r^{2}+$ $6 r-6=0$. Numerically, we find the solution to this is 1.596071637983322 , so the best estimate is $\hat{\theta}=1400 \times 1.596071637983322=2234.50$.
3. An insurance company models annual claim frequencies as following a Poisson distribution with parameter Λ, where the prior distribution for Λ is a Gamma distribution with $\alpha=3$ and $\theta=0.06$. They observe a total of 5 claims in 15 years. Calculate a 95% credibility interval for Λ.
(a) Using an HPD interval.

Since the Gamma distribution is a conjugate prior, the posterior distribution is a Gamma distribution with $\alpha=3+5=8$ and $\theta=\frac{0.06}{1+0.06 \times 15}=0.031584210526$. The 95% credibility interval is the interval which under such a gamma distribution has probability 0.95 , and such that the gamma density of the endpoints is equal. That is, if the integral is of the form $[l \theta, u \theta]$, then we have $l^{\alpha-1} e^{-l}=u^{\alpha-1} e^{-u}$ and $\int_{l}^{u} x^{\alpha-1} e^{-x} d x=0.95 \Gamma(\alpha)$.
(b) With equal probability above and below the interval.

The equal probability interval is between the 2.5 th and 97.5 th percentile of the gamma distribution, which is $[3.453832 \times 0.031584210526,14.42268 \times 0.031584210526]=[0.1090684,0.4554529]$.
4. Calculate a conjugate prior distribution for the parameter α of a Pareto distribution.

Suppose a Pareto distribution has fixed θ and α following a certain prior distibution. Suppose the observation is x. The likelihood of this observation with the given data is $\frac{\alpha}{x}\left(\frac{\theta}{\theta+x}\right)^{\alpha}$, which is proportional to $\alpha e^{-\log \left(1+\frac{x}{\theta}\right) \alpha}$, which is the density of a gamma distribution, so a gamma distribution is a conjugate prior.

Standard Questions

5. An insurance company models number of claims made by an individual in a year as following a Poisson distribution where the parameter Λ follows a Gamma distribution with $\alpha=3$ and $\theta=0.06$. The company monitors the individual's claim history. If the individual's expected number of claims per year has decreased by 10% or more, the individual receives a discount on their premium. Suppose the individual's actual rate of claims is $\lambda=0.25$, what is the probability that this individual ever receives a discount on their premium?
If after N years, the number of claims is k, then the posterior distribution for λ is a Gamma distribution with $\alpha=3+k$ and $\theta=\frac{0.06}{1+0.06 \times N}$. The expected number of claims under the prior distribution is $3 \times 0.06=0.18$. A decrease of 10% would reduce the expected number of claims per year to $0.18 \times 0.9=$ 0.162 . The expected number of claims under the posterior distribution is $\frac{0.06(3+k)}{1+0.06 N}$. The individual will therefore receive a discount if

$$
\begin{array}{r}
\frac{0.06(3+k)}{1+0.06 N} \leqslant 0.162 \\
0.18+0.06 k \leqslant 0.162+0.00972 N \\
0.00972 N \geqslant 0.018+0.06 k
\end{array}
$$

We solve for the smallest value of N that entitles the policyholder to a discount for different values of k.

k	N
0	2
1	9
2	15
3	21
4	27
5	33
6	39
7	46
8	52
9	58
10	64

The probability that the individual makes no claims in the first two years is $e^{-0.5}=0.6065307$. The probability that the individual makes at least one claim in the first two years and at most one claim within the first 9 years is $0.5 e^{-0.5} e^{-1.75}=0.05269961$ (They must make exactly one claim in the first

2 years and no claims in the following 7 years). The probability that the individual makes at least one claim within the first 2 years, at least 2 claims within the first 9 years, and at most 2 claims within the first 15 years is $0.5 e^{-0.5} \times 1.75 e^{-1.75} e^{-1.5}+e^{-0.5} \frac{0.5^{2}}{2} e^{-1.75} e^{-1.5}=0.02351775$. The probability that the individual makes at least 1 claim in the first 2 years, at least 2 claims in the first 9 years, at least 3 claims in the first 15 years, and at most 3 claims in the first 21 years is

$$
e^{-5.25}\left(0.5 \times 1.75 \times 1.5+0.5 \times \frac{1.75^{2}}{2}+\frac{0.5^{2}}{2} \times 1.75+\frac{0.5^{2}}{2} \times 1.5+\frac{0.5^{3}}{3}\right)=0.01314613
$$

The probability that the individual makes at least 1 claim in the first 2 years, at least 2 claims in the first 9 years, at least 3 claims in the first 15 years, at least 4 claims in the first 21 years and at most 4 claims in the first 27 years is

$$
\begin{aligned}
& e^{-6.75}\left(0.5 \times 1.75 \times 1.5 \times 1.5+0.5 \times 1.75 \times \frac{1.5^{2}}{2}+0.5 \times \frac{1.75^{2}}{2} \times 1.5+0.5 \times \frac{1.75^{2}}{2} \times 1.5+0.5 \times \frac{1.75^{3}}{6}+\right. \\
& \frac{0.5^{2}}{2} \times 1.5 \times 1.5+\frac{0.5^{2}}{2} \times \frac{1.5^{2}}{2}+\frac{0.5^{2}}{2} \times 1.75 \times 1.5+\frac{0.5^{2}}{2} \times 1.75 \times 1.5+\frac{0.5^{2}}{2} \times \frac{1.75^{2}}{2}+\frac{0.5^{3}}{6} \times 1.5+ \\
& \left.\frac{0.5^{3}}{6} \times 1.5+\frac{0.5^{3}}{6} \times 1.75+\frac{0.5^{4}}{24}\right)=0.008275436
\end{aligned}
$$

The probability that the individual makes at least 1 claim in the first 2 years, at least 2 claims in the first 9 years, at least 3 claims in the first 15 years, at least 4 claims in the first 21 years, at least 5 claims in the first 27 years and at most 5 claims in the first 33 years is

$$
\begin{aligned}
& e^{-8.25}\left(0.5 \times 1.75 \times 1.5 \times 1.5 \times 1.5\left(1+\frac{3}{2}+\frac{1}{6}\right)+0.5 \times \frac{1.75^{2}}{2} \times 1.5^{2}\left(3+\frac{3}{2}\right)+0.5 \times \frac{1.75^{3}}{6} \times 1.5 \times 3+\right. \\
& 0.5 \times \frac{1.75^{4}}{24}+\frac{0.5^{2}}{2} \times 1.5^{3}\left(1+\frac{3}{2}+\frac{1}{6}\right)+\frac{0.5^{2}}{2} \times 1.75 \times 1.5^{2}\left(3+\frac{3}{2}\right)+\frac{0.5^{2}}{2} \times \frac{1.75^{2}}{2} \times 1.5 \times 3+ \\
& \frac{0.5^{2}}{2} \times \frac{1.75^{3}}{6}+\frac{0.5^{3}}{6} \times 1.5^{2}\left(3+\frac{3}{2}\right)+\frac{0.5^{3}}{6} \times 1.75 \times 1.5 \times 3+\frac{0.5^{3}}{6} \times \frac{1.75^{2}}{23}+ \\
& \left.\frac{0.5^{4}}{24} \times 1.5 \times 3+\frac{0.5^{4}}{24} \times 1.75+\frac{0.5^{5}}{120}\right)=0.005896181
\end{aligned}
$$

The total probability of receiving the discount is therefore $0.6065307+0.05269961+0.02351775+$ $0.01314613+0.008275436+0.005896181=0.71$.

