ACSC/STAT 4703, Actuarial Models II Fall 2016 Toby Kenney Homework Sheet 4 Model Solutions

Basic Questions

1. An insurance company models number of claims an individual makes in a year as following a negative binomial distribution with $\beta = 2.1$, and R an unknown parameter with prior distribution a gamma distribution with $\alpha = 4$ and $\theta = 0.01$.

(a) What is the probability that a random individual makes exactly 4 claims?

The probability that an individual with parameter R makes exactly 4 claims is

$$\binom{R+3}{4} \left(\frac{1}{1+\beta}\right)^R \left(\frac{\beta}{1+\beta}\right)^4$$

The marginal probability of an individual making exactly 4 claims is found by integrating this over R:

$$\begin{split} &\int_{0}^{\infty} \frac{10^{8} r^{3} e^{-100r}}{6} \binom{r+3}{4} \left(\frac{1}{3.1}\right)^{r} \left(\frac{2.1}{3.1}\right)^{4} dr \\ &= \frac{10^{8}}{6 \times 24} \left(\frac{2.1}{3.1}\right)^{4} \int_{0}^{\infty} r^{4} (r+1)(r+2)(r+3) e^{-(100+\log(3.1))r} dr \\ &= \frac{10^{8}}{6 \times 24} \left(\frac{2.1}{3.1}\right)^{4} \int_{0}^{\infty} (r^{7} + 6r^{6} + 11r^{5} + 6r^{4}) e^{-(100+\log(3.1))r} dr \\ &= \frac{10^{8}}{6 \times 24} \left(\frac{2.1}{3.1}\right)^{4} \left(\frac{7!}{(100+\log(3.1))^{8}} + \frac{6 \times 6!}{(100+\log(3.1))^{7}} + \frac{11 \times 5!}{(100+\log(3.1))^{6}} + \frac{6 \times 4!}{(100+\log(3.1))^{5}}\right) \\ &= 0.002177018 \end{split}$$

(b) The company now observes the following claim frequencies:

Number of claims	Frequency
0	36
1	27
2	15
3	5
4	2
5	1

What is the probability that R > 0.4? [You may use numerical integration to calculate this.] The likelihood of the data given R = r is

$$\frac{1}{3.1^{86r}} \left(\frac{2.1}{3.1}\right)^{27+15\times2+5\times3+2\times4+1\times5} \binom{r}{1}^{27} \binom{r+1}{2}^{15} \binom{r+2}{3}^5 \binom{r+3}{4}^2 \binom{r+4}{5}$$

This is proportional to

$$\frac{r^{50}(r+2)^{23}(r+3)^8(r+4)^3(r+5)^1}{3.1^{86r}}$$

The posterior distribution is therefore proportional to

$$e^{-100r} \frac{r^{53}(r+2)^{23}(r+3)^8(r+4)^3(r+5)}{3.1^{86r}}$$

The probability that R > 0.4 is therefore

$$\frac{\int_{0.6}^{\infty} e^{-(100+86\log(3.1))r} r^{53}(r+1)^{23}(r+2)^8(r+3)^3(r+4)}{\int_0^{\infty} e^{-(100+86\log(3.1))r} r^{53}(r+1)^{23}(r+2)^8(r+3)^3(r+4)} = 0.01901318$$

where the integrals were performed numerically.

(c) Calculate the predictive probability that this individual makes 5 claims next year. [You may use numerical integration to calculate this.]

The posterior density of R is proportional to

$$e^{-100r} \frac{r^{53}(r+1)^{23}(r+2)^8(r+3)^3(r+4)}{3.1^{86r}}$$

so the posterior probability that the individual makes 5 claims next year is

$$\frac{\left(\frac{2.1}{3.1}\right)^5 \int_0^\infty 3.1^{-r} \binom{r+4}{5} e^{-100r} 3.1^{-86r} r^{53} (r+1)^{23} (r+2)^8 (r+3)^3 (r+4) dr}{\int_0^\infty e^{-100r} 3.1^{-86r} r^{53} (r+1)^{23} (r+2)^8 (r+3)^3 (r+4) dr}$$

= $\left(\frac{2.1^5}{5!3.1^5}\right) \frac{\int_0^\infty e^{-100r} 3.1^{-87r} r^{54} (r+1)^{24} (r+2)^9 (r+3)^4 (r+4)^2 dr}{\int_0^\infty e^{-100r} 3.1^{-86r} r^{53} (r+1)^{23} (r+2)^8 (r+3)^3 (r+4) dr}$
= 0.01115985

Where the integral was calculated numerically.

2. An insurance company models loss sizes as following a Gamma distribution with $\alpha = 3$, and finds that the posterior distribution for Θ is an exponential distribution with $\theta = 1400$. Calculate the Bayes estimate for Θ based on a loss function:

(a)
$$l(\hat{\theta}, \theta) = (\hat{\theta} - \theta)^2$$

We are trying to choose $\hat{\theta}$ to minimise

$$\mathbb{E}\left((\hat{\theta}-\theta)^2\right) = \hat{\theta}^2 - 2\hat{\theta}\mathbb{E}(\theta) + \mathbb{E}(\theta^2)$$

For the exponential distribution, we have

$$\mathbb{E}(\theta) = 1400$$
$$\mathbb{E}(\theta^2) = 2 \times 1400^2$$
$$\mathbb{E}(\theta^3) = 6 \times 1400^3$$
$$\mathbb{E}(\theta^4) = 24 \times 1400^4$$

So we want to minimise $\hat{\theta}^2 - 2800\hat{\theta} + 3920000$. This is maximised by $\hat{\theta} = 1400$. (b) $l(\hat{\theta}, \theta) = (\hat{\theta} - \theta)^4$

We are trying to choose $\hat{\theta}$ to minimise

$$\mathbb{E}\left((\hat{\theta} - \theta)^{4}\right) = \hat{\theta}^{4} - 4\hat{\theta}^{3}\mathbb{E}(\theta) + 6\hat{\theta}^{2}\mathbb{E}(\theta^{2}) - 4\hat{\theta}\mathbb{E}(\theta^{3}) + \mathbb{E}(\theta^{4})$$

$$= \hat{\theta}^{4} - 4 \times 1400\hat{\theta}^{3} + 12 \times 1400^{2}\hat{\theta}^{2} - 24 \times 1400^{3}\hat{\theta} + 24 \times 1400^{4}$$

$$= 1400^{4} \left(\left(\frac{\hat{\theta}}{1400}\right)^{4} - 4\left(\frac{\hat{\theta}}{1400}\right)^{3} + 12\left(\frac{\hat{\theta}}{1400}\right)^{2} - 24\left(\frac{\hat{\theta}}{1400}\right) + 24\right)$$

This is minimised by $\frac{\hat{\theta}}{1400}$ is the solution to $4r^3 - 12r^2 + 24r - 24 = 0$, or equivalently $r^3 - 3r^2 + 6r - 6 = 0$. Numerically, we find the solution to this is 1.596071637983322, so the best estimate is $\hat{\theta} = 1400 \times 1.596071637983322 = 2234.50$.

3. An insurance company models annual claim frequencies as following a Poisson distribution with parameter Λ , where the prior distribution for Λ is a Gamma distribution with $\alpha = 3$ and $\theta = 0.06$. They observe a total of 5 claims in 15 years. Calculate a 95% credibility interval for Λ .

(a) Using an HPD interval.

Since the Gamma distribution is a conjugate prior, the posterior distribution is a Gamma distribution with $\alpha = 3 + 5 = 8$ and $\theta = \frac{0.06}{1+0.06\times15} = 0.031584210526$. The 95% credibility interval is the interval which under such a gamma distribution has probability 0.95, and such that the gamma density of the endpoints is equal. That is, if the integral is of the form $[l\theta, u\theta]$, then we have $l^{\alpha-1}e^{-l} = u^{\alpha-1}e^{-u}$ and $\int_{l}^{u} x^{\alpha-1}e^{-x} dx = 0.95\Gamma(\alpha)$.

(b) With equal probability above and below the interval.

The equal probability interval is between the 2.5th and 97.5th percentile of the gamma distribution, which is $[3.453832 \times 0.031584210526, 14.42268 \times 0.031584210526] = [0.1090684, 0.4554529].$

4. Calculate a conjugate prior distribution for the parameter α of a Pareto distribution.

Suppose a Pareto distribution has fixed θ and α following a certain prior distibution. Suppose the observation is x. The likelihood of this observation with the given data is $\frac{\alpha}{x} \left(\frac{\theta}{\theta+x}\right)^{\alpha}$, which is proportional to $\alpha e^{-\log(1+\frac{x}{\theta})\alpha}$, which is the density of a gamma distribution, so a gamma distribution is a conjugate prior.

Standard Questions

5. An insurance company models number of claims made by an individual in a year as following a Poisson distribution where the parameter Λ follows a Gamma distribution with $\alpha = 3$ and $\theta = 0.06$. The company monitors the individual's claim history. If the individual's expected number of claims per year has decreased by 10% or more, the individual receives a discount on their premium. Suppose the individual's actual rate of claims is $\lambda = 0.25$, what is the probability that this individual ever receives a discount on their premium?

If after N years, the number of claims is k, then the posterior distribution for λ is a Gamma distribution with $\alpha = 3 + k$ and $\theta = \frac{0.06}{1+0.06 \times N}$. The expected number of claims under the prior distribution is $3 \times 0.06 = 0.18$. A decrease of 10% would reduce the expected number of claims per year to $0.18 \times 0.9 = 0.162$. The expected number of claims under the posterior distribution is $\frac{0.06(3+k)}{1+0.06N}$. The individual will therefore receive a discount if

 $\begin{aligned} \frac{0.06(3+k)}{1+0.06N} \leqslant 0.162 \\ 0.18+0.06k \leqslant 0.162+0.00972N \\ 0.00972N \geqslant 0.018+0.06k \end{aligned}$

We solve for the smallest value of N that entitles the policyholder to a discount for different values of k.

The probability that the individual makes no claims in the first two years is $e^{-0.5} = 0.6065307$. The probability that the individual makes at least one claim in the first two years and at most one claim within the first 9 years is $0.5e^{-0.5}e^{-1.75} = 0.05269961$ (They must make exactly one claim in the first

2 years and no claims in the following 7 years). The probability that the individual makes at least one claim within the first 2 years, at least 2 claims within the first 9 years, and at most 2 claims within the first 15 years is $0.5e^{-0.5} \times 1.75e^{-1.75}e^{-1.5} + e^{-0.5}\frac{0.5^2}{2}e^{-1.75}e^{-1.5} = 0.02351775$. The probability that the individual makes at least 1 claim in the first 2 years, at least 2 claims in the first 9 years, at least 3 claims in the first 15 years, and at most 3 claims in the first 21 years is

$$e^{-5.25} \left(0.5 \times 1.75 \times 1.5 + 0.5 \times \frac{1.75^2}{2} + \frac{0.5^2}{2} \times 1.75 + \frac{0.5^2}{2} \times 1.5 + \frac{0.5^3}{3} \right) = 0.01314613$$

The probability that the individual makes at least 1 claim in the first 2 years, at least 2 claims in the first 9 years, at least 3 claims in the first 15 years, at least 4 claims in the first 21 years and at most 4 claims in the first 27 years is

$$e^{-6.75} \left(0.5 \times 1.75 \times 1.5 \times 1.5 + 0.5 \times 1.75 \times \frac{1.5^2}{2} + 0.5 \times \frac{1.75^2}{2} \times 1.5 + 0.5 \times \frac{1.75^2}{2} \times 1.5 + 0.5 \times \frac{1.75^3}{6} + \frac{0.5^2}{2} \times 1.5 \times 1.5 + \frac{0.5^2}{2} \times \frac{1.5^2}{2} + \frac{0.5^2}{2} \times 1.75 \times 1.5 + \frac{0.5^2}{2} \times 1.75 \times 1.5 + \frac{0.5^2}{2} \times \frac{1.75^2}{2} + \frac{0.5^3}{6} \times 1.5 + \frac{0.5^3}{6} \times 1.75 + \frac{0.5^4}{24} \right) = 0.008275436$$

The probability that the individual makes at least 1 claim in the first 2 years, at least 2 claims in the first 9 years, at least 3 claims in the first 15 years, at least 4 claims in the first 21 years, at least 5 claims in the first 27 years and at most 5 claims in the first 33 years is

$$e^{-8.25} \left(0.5 \times 1.75 \times 1.5 \times 1.5 \times 1.5 \left(1 + \frac{3}{2} + \frac{1}{6} \right) + 0.5 \times \frac{1.75^2}{2} \times 1.5^2 \left(3 + \frac{3}{2} \right) + 0.5 \times \frac{1.75^3}{6} \times 1.5 \times 3 + 0.5 \times \frac{1.75^4}{24} + \frac{0.5^2}{2} \times 1.5^3 \left(1 + \frac{3}{2} + \frac{1}{6} \right) + \frac{0.5^2}{2} \times 1.75 \times 1.5^2 \left(3 + \frac{3}{2} \right) + \frac{0.5^2}{2} \times \frac{1.75^2}{2} \times 1.5 \times 3 + \frac{0.5^2}{2} \times \frac{1.75^3}{6} + \frac{0.5^3}{6} \times 1.5^2 \left(3 + \frac{3}{2} \right) + \frac{0.5^3}{6} \times 1.75 \times 1.5 \times 3 + \frac{0.5^3}{6} \times \frac{1.75^2}{23} + \frac{0.5^4}{24} \times 1.5 \times 3 + \frac{0.5^4}{24} \times 1.75 + \frac{0.5^5}{120} \right) = 0.005896181$$

The total probability of receiving the discount is therefore 0.6065307 + 0.05269961 + 0.02351775 + 0.01314613 + 0.008275436 + 0.005896181 = 0.71.