
ACSC/STAT 4703, Actuarial Models II
FALL 2017
Toby Kenney

Sample Midterm Examination
Model Solutions

This Sample examination has more questions than the actual midterm, in
order to cover a wider range of questions. Estimated times are provided after
each question to help your preparation.

Here are some values of the Gamma distribution function with θ = 1 that
will be needed for this examination:

x α F (x)
245 255 0.2697208(
7.5
12

)3 4
3 0.1117140(

9.5
12

)3 4
3 0.2507382

2.5 1 0.917915
2.5 2 0.7127025
2.5 3 0.4561869
2.5 4 0.2424239

1. Loss amounts follow an exponential distribution with θ = 60, 000. The
distribution of the number of losses is given in the following table:

Number of Losses Probability
0 0.04
1 0.54
2 0.27
3 0.15

Assume all losses are independent and independent of the number of losses.
The insurance company buys excess-of-loss reinsurance on the part of the
loss above $150,000. Calculate the expected payment for this excess-of-loss
reinsurance.

If the number of losses is n, then the aggregate loss follows a gamma
distribution with α = n and θ = 60000. The expected payment on the
excess-of-loss insurance is therefore

∫ ∞
150000

(x− 150000)
xn−1e−

x
60000

(n− 1)!60000n
dx

=

∫ ∞
150000

xne−
x

60000

(n− 1)!6000n
dx− 150000

∫ ∞
150000

xn−1e−
x

60000

(n− 1)!60000n
dx

=

∫ ∞
2.5

60000nune−u

n!
du− 150000

∫ ∞
2.5

un−1e−u

(n− 1)!
du
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This gives the following expected payments on the excess-of-loss reinsur-
ance:

Number of Losses Probability Expected payment on excess-of-loss product
0 0.04 0 0
1 0.54 60000× 1× 0.2872975− 150000× 0.0820850 = 4925.10 2659.554
2 0.27 60000× 2× 0.5438131− 150000× 0.2872975 = 22162.95 5983.996
3 0.15 60000× 3× 0.7575761− 150000× 0.5438131 = 54791.74 8218.760

The total expected payment on the excess-of-loss reinsurance is therefore
2659.554 + 5983.996 + 8218.760 = $16, 862.31.

2. Aggregate payments have a compund distribution. The frequency distribu-
tion is negative binomial with r = 4 and β = 12. The severity distribution
is a Gamma distribution with α = 8 and θ = 3000. Use a normal approx-
imation to aggregate payments to estimate the probability that aggregate
payments are more than $2,000,000.

The frequency distribution has mean 48 and variance 624. The severity
distribution has mean 24000 and variance 72000000.

The mean of aggregate payments is therefore, 48× 24000 = 1152000, and
the variance is 624×240002 +48×72000000 = 362880000000, so the stan-
dard deviation is

√
362880000000 = 602395.2. The probability of exceed-

ing $2,000,000 is therefore 1−Φ
(
2000000−1152000

602395.2

)
= 1− Phi(1.407714) =

1− 0.9203921 = 0.0796.

3. Claim frequency follows a negative binomial distribution with r = 5 and
β = 2.9. Claim severity (in thousands) has the following distribution:

Severity Probability
0 0
1 0.600
2 0.220
3 0.166

Use the recursive method to calculate the exact probability that aggregate
claims are at least 4.

For the negative binomial distribution, we have a = β
1+β = 2.9

3.9 and b =
(r−1)β
1+β = 4×2.9

3.9 , so the recursive formula

fS(x) =
(p1 − (a+ b)p0)fX(x) +

∑x
i=1

(
a+ bi

x

)
fX(i)fS(x− i)

1− afX(0)

becomes

fS(x) =

x∑
i=1

2.9

3.9

(
1 +

4i

x

)
fX(i)fS(x− i)
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Since the severity distribution has no probability at zero, the only way for
the aggregate loss to be zero is if the frequency is zero, the probability of

which is
(

1
1+β

)r
= 1

3.9

5
= 0.00110835. We now use the recurrence:

fS(1) =
2.9

3.9
× 5× 0.600× 0.00110835 = 0.002472473

fS(2) =
2.9

3.9
× (3× 0.600× 0.002472473 + 5× 0.220× 0.00110835) = 0.004215883

fS(3) =
2.9

3.9
×
(

7

3
× 0.600× 0.004215883 +

11

3
× 0.220× 0.002472473 + 5× 0.166× 0.00110835

)
= 0.006555954

The probability that the aggregate payments exceed 4 is therefore 1 −
0.00110835− 0.002472473− 0.004215883− 0.006555954 = 0.9856473.

4. Using an arithmetic distribution (h = 1) to approximate a Weibull distri-
bution with τ = 3 and θ = 12, calculate the probability that the value is
between 3.5 and 8.5, for the approximation using:

(a) The method of rounding.

The method of rounding preserves this probability, since it assigns all

values between 3.5 and 4.5 to 4, etc. Therefore this probability is e−( 3.5
12 )

3

−
e−( 8.5

12 )
3

= 0.2745978.

(b) The method of local moment matching, matching 1 moment on each
interval. [Γ

(
4
3

)
= 0.8929795.]

Using local moment matching, the probabilities of the intervals [3.5, 5.5]

and [5.5, 7.5] are preserved, so the probability of these intervals is e−( 3.5
12 )

3

−
e−( 7.5

12 )
3

= 0.1921159.

For the interval [7.5, 9.5], the probability of this interval is e−( 7.5
12 )

3

−
e−( 9.5

12 )
3

= 0.174517, while the conditional mean times this probability is

∫ 9.5

7.5

x

(
3x2

123
e−( x

12 )
3
)
dx =

∫ ( 9.5
12 )

3

( 7.5
12 )

3
12 3
√
ue−u du

= 12

∫ ( 9.5
12 )

3

( 7.5
12 )

3
u

1
3 e−u du

= 12Γ

(
4

3

)
(0.2507382− 0.1117140)

= 12× 0.8929795× (0.2507382− 0.1117140)

= 1.489749
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We are now trying to solve for p8 and p9 such that

p8 + p9 = 0.174517

8p8 + 9p9 = 1.489749

p8 = 9× 0.174517− 1.489749 = 0.080904

So the probability of the interval [3.5, 8.5] is therefore 0.1921159+0.080904 =
0.273020.

5. An insurance company has the following portfolio of auto insurance poli-
cies:

Type of driver Number Probability mean standard
claim of claim deviation

Good driver 600 0.02 $2,500 $2,000
Average driver 1400 0.06 $3,800 $3,200
Bad driver 500 0.13 $7,000 $3,600

Calculate the cost of reinsuring losses above $5,000,000, if the loading
on the reinsurance premium is one standard deviation above the expected
claim payment on the reinsurance policy, using a Pareto approximation
for the aggregate losses on this portfolio.

The expected aggregate loss is 600× 0.02× 2500 + 1400 × 0.06× 3800 +
500× 0.13× 7000 = 804200, and the variance is

600×0.02×0.98×25002+600×0.02×20002+1400×0.06×0.94×38002+
1400 × 0.06 × 32002 + 500 × 0.13 × 0.87 × 70002 + 500 × 0.13 × 36002 =
5735192400.

We solve for the parameters of a Pareto distribution with these moments:

θ

α− 1
= 804200

θ2

(α− 1)2(α− 2)
= 5735192400

α− 2 =
8042002

5735192400
= 112.7665

α = 114.7665

θ = 113.7665× 804200 = 91491019

The expected payment on the excess-of-loss reinsurance for losses above
a = 5000000 is
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∫ ∞
a

(
θ

θ + x

)α
dx =

∫ ∞
a+θ

θαu−α du =

[
−θ

αu1−α

α− 1

]∞
a+θ

=
θα(a+ θ)1−α

α− 1
= 1889.727

The expected square of the payment is

∫ ∞
a

2x

(
θ

θ + x

)α
dx =

∫ ∞
a+θ

θα2(u−a)u−α du = 2

[
−θ

αu2−α

α− 2

]∞
a+θ

−1889.727×2a = 2
θα(a+ θ)2−α

α− 2
−2a×1889.727 = 349020072811

The variance is 349020072811 − 1889.7272 = 349016501743, so the mean
plus one standard deviation is 1889.727 +

√
349016501743 = $592, 665.91.

6. An insurance company collects a sample of 25 past claims, and attempts
to fit a Pareto distribution to the claims. Based on experience with other
claims, the company believes that a Pareto distribution with α = 3.5 and
θ = 4, 600 may be appropriate to model these claims. It constructs the
following p-p plot to compare the sample to this distribution:
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(a) How many of the points in their sample were less than 1,200? [5 mins.]

We have

F ∗(1200) = 1−
(

46

58

)3.5

= 0.5557224

so we look for the point on the graph with F ∗(x) = 0.5557224.
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We see that the corresponding value of Fn(x) is 0.56. (The values of
Fn(x) are in increments of 0.04, since there are 25 data points. The value
corresponding to F ∗(x) is one increment before 0.6, so is 0.56).

(b) Which of the following statements best describes the fit of the Pareto
distribution to the data: [5 mins.]

(i) The Pareto distribution assigns too much probability to high values and
too little probability to low values.

(ii) The Pareto distribution assigns too much probability to low values and
too little probability to high values.

(iii) The Pareto distribution assigns too much probability to tail values
and too little probability to central values.

(iv) The Pareto distribution assigns too much probability to central values
and too little probability to tail values.

We see that there are 8 data points with F ∗(x) < 0.1 approximately.
The expected number is 2.5. There are 7 data points with F (x) > 0.9.
Again, the expected number is 2.5. The Pareto distribution has therefore
underestimated the probabilities of these tail regions, and overestimated
the probability of the region in between. Therefore, statement (iv) best
describes the fit.

7. An insurance company collects a sample of 20 claims. Based on previous
experience, it believes these claims might follow a Weibull distribution with
τ = 0.6 and a known value of θ. To test this, it obtains a plot of D(x).
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(a) Which of the following is the value of θ used in the plot: [5 mins.]

(i) 800

(ii) 1,100

(iii) 2,200

(iv) 3,500

The data points in the sample correspond to vertical line segments on the
plot. We see for example, that there are 3 data points above 6000, so
F20(6000) = 17

20 = 0.85. Reading from the graph, we get that D(6000) ≈
−0.09. This means F ∗(6000) = 0.85− (−0.09) = 0.94. This gives:

1− e−( 6000
θ )

0.6

= 0.94(
6000

θ

)0.6

= − log(0.06)

6000

θ
= (− log(0.06))

1
0.6

θ =
6000

(− log(0.06))
1

0.6

= 1070.112

This is clearly closest to (ii), so (ii) is the value of θ used. (The difference
between this answer and the 1,100 is because we only have limited accuracy
reading the graph.)

[We can find the value of θ by reading off the value of D(x) for any
X on the graph. If it is difficult to count the number of vertical line
segments, we could compare D(x1) and D(x2) for values of x1 and x2
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with no vertical line segments in between. For example, we can read the
value D(4200) ≈ −0.04, which leads us to solve

F ∗(6000)− F ∗(4200) = 0.05

We can try the values given to see which is closer to the solution.]

(b) Which of the following statements best describes the fit of the Weibull
distribution to the data: [5 mins.]

(i) The Weibull distribution assigns too much probability to high values
and too little probability to low values.

(ii) The Weibull distribution assigns too much probability to low values
and too little probability to high values.

(iii) The Weibull distribution assigns too much probability to tail values
and too little probability to central values.

(iv) The Weibull distribution assigns too much probability to central values
and too little probability to tail values.

Recall that D(x) = Fn(x) − F ∗(x), so if D(x) < 0, we have F ∗(x) >
Fn(x), while if D(x) > 0, we have F ∗(x) < Fn(x). On the graph shown,
we have that D(x) is nearly always negative for the range of the data.
[Technically, it is positive for all values larger than the data sample, but
this always happens, because for the largest value of the data sample, we
have Fn(x) = 1 > F ∗(x).] This means that F ∗(x) > Fn(x) for most
x in the range. This means that the Weibull distribution assigns more
probability to smaller values of x, and less probability to larger values of
x, which is statement (ii).

8. An insurance company collects a sample of 30 claims. Based on previous
experience, it believes these claims might follow a gamma distribution with
α = 2.7 and θ = 1400. To test this, it compares plots of Fn(x) and F∗(x).
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(a) Which of the following is the value of the Kolmogorov-Smirnov statistic
for this model and this data [5 mins.]

(i) 0.0102432

(ii) 0.0450353

(iii) 0.0924252

(iv) 0.1678255

The Kolmogorov-Smirnov test statistic is the maximum value of the ab-
solute difference between the empirical and model distribution functions,
that is |Fn(x) − F ∗(x)|. On the graph, we see this happens at around
2000, and read the values from the graph:
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We read Fn(x) = 0.066667 (we know the possible values of Fn(x), since
we know there are 30 data points), and F ∗(x) = 0.23 (the actual value
is 0.2318889.) The difference is therefore about 1.6, so (iv) is the correct
answer.

(b) Which of the following statements best describes the fit of the Gamma
distribution to the data: [5 mins.]

(i) The Gamma distribution assigns too much probability to high values
and too little probability to low values.

(ii) The Gamma distribution assigns too much probability to low values
and too little probability to high values.

(iii) The Gamma distribution assigns too much probability to tail values
and too little probability to central values.

(iv) The Gamma distribution assigns too much probability to central values
and too little probability to tail values.

From the graph, we see that F ∗ (x) is too large for small values less than
about 2500, and about correct for larger values. This means that the
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gamma model assigns too little probability in the range 0–2,000 and too
much in the range 2,000–2,500. We also see that F ∗(x) is slightly too low
at values above 6,000. This means that the gamma distribution assigns
too little probability to values larger than 6,000. This means that (iv) is
probably the best description of the fit. However, a case could be made
for (ii) being a good description, since the difference between F ∗(x) and
Fn(x) for x > 6000 is very small.

9. An insurance company collects a sample of 30 past claims, and attempts
to fit a Pareto distribution to the claims. Based on experience with other
claims, the company believes that a Pareto distribution with α = 2.8 and
θ = 2, 600 may be appropriate to model these claims. It compares the
density functions in the following plot:
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(a) How many data points in the sample were between 1500 and 3000? [5
mins.]

We are asking how many data points are in the last two bars. The height
of the fourth bar (from 1,500–2,200) is about 0.0001, and the height of the
fifth bar (from 2,200–3,000) is about 0.00005, so the areas of these two bars
are 700×0.0001 = 0.07 and 800×0.00005 = 0.04 respectively. Since there
are 30 claims in the sample, these correspond to 2 data points and 1 data
point respectively, (which would give accurate heights of 0.00009524 and
0.00004167 respectively). Therefore, the number of data points between
1,500 and 3,000 is 3.

(b) Which of the following plots is the p-p plot for this data and model?
[10 mins.]
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(ii)
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From the histogram, we see that the model assigns too little probability
to small values less than 300, and too much probability to values more
than 500. The p-p plot should therefore have slope less than 1 for the
first part, then slope more than 1. We would expect Fn(x) > F ∗(x) for
all x, so the p-p plot should be entirely below the line y = x (it is in
theory possible there could be some small values with F ∗ (x) > Fn(x),
since the histogram only shows grouped data, so it is possible for example
that all samples in the range 0–300 actually fell in the range 200–300). It
seems that the largest difference between Fn(x) and F ∗(x) should happen
at around x = 500, and it looks like the area of the bar 0–300 on the
histogram is approximately equal to the combined area of the other 3 bars.
More accurately, it looks like the height of this bar is about 0.0022, and
the width is about 300, so the area is about 0.66, so the largest difference
between Fn(x) and F ∗(x) should occur at about Fn(x) = 0.66. Also, after
the first bar, the model is overestimating the probability density, which
means that after this point, the slope of the p-p plot should be more than
1.

Looking at the options, plots (i) and (iii) are above the y = x line for some
values of x. Plot (iv) is close to the line for values less than Fn(x) = 0.5,
and does not deviate so much from the line, and its furthest point from
the line is around Fn(x) = 0.9, so it is not correct. Therefore, plot (ii) is
the correct plot.

10. An insurance company collects the following sample:

2.31 8.65 35.29 42.27 151.51 194.99 523.50 1262.01 1402.72

6063.74

They model this as following a Pareto distribution with α = 2 and θ =
2000. Calculate the Kolmogorov-Smirnov statistic for this model and this
data. [10 mins.]
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x F ∗ (x) D(x+) D(x−)
2.31 0.002306004 0.002306004 0.09769400 0.09769400
8.65 0.008594205 0.091405795 0.19140580 0.19140580

35.29 0.034377462 0.165622538 0.26562254 0.26562254
42.27 0.040966725 0.259033275 0.35903327 0.35903327

151.51 0.135881599 0.264118401 0.36411840 0.36411840
194.99 0.169776735 0.330223265 0.43022327 0.43022327
523.50 0.371864450 0.228135550 0.32813555 0.32813555

1262.01 0.624085208 0.075914792 0.17591479 0.17591479
1402.72 0.654532208 0.145467792 0.24546779 0.24546779
6063.74 0.938484160 0.038484160 0.06151584 0.06151584

So the Kolmogorov-Smirnov statistic is 0.4302.

11. An insurance company collects the following sample:

0.27 2.03 9.89 16.96 28.38 236.46 268.36 453.19 633.26

718.68 1414.59 1588.19 2535.69 4937.93 5431.13

They model this as following a gamma distribution with α = 0.4 and θ =
6000. Calculate the Anderson-Darling statistic for this model and this
data. [10 mins.]

You are given the following values of the Gamma distribution used in the
model:

x F (x) log(F (x)) log(1− F (x))
0.27 0.02056964 −3.8839392 −0.02078414
2.03 0.04609387 −3.0770753 −0.04719001
9.89 0.08680820 −2.4440542 −0.09080935

16.96 0.10767291 −2.2286572 −0.11392253
28.38 0.13222244 −2.0232696 −0.14181987

236.46 0.30572308 −1.1850755 −0.36488438
268.36 0.32111513 −1.1359556 −0.38730373
453.19 0.39258278 −0.9350079 −0.49853938
633.26 0.44506880 −0.8095264 −0.58891114
718.68 0.46633756 −0.7628455 −0.62799177

1414.59 0.59250242 −0.5234003 −0.89772028
1588.19 0.61583950 −0.4847689 −0.95669484
2535.69 0.71295893 −0.3383315 −1.24812996
4937.93 0.84646394 −0.1666877 −1.87381984
5431.13 0.86352967 −0.1467270 −1.99164807

The Anderson-Darling statistic for complete data with no truncation or
censorship can be calculated as

A2 = −n+ n

k−1∑
j=0

(1− Fn(yj))
2 (log(1− F ∗(yj))− log(1− F ∗(yj+1))) + n

k∑
j=1

(Fn(yj))
2 (log(F ∗(yj+1))− log(F ∗(yj)))
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We compute the terms in the following table:

j yj n(1− Fn(yj))
2 (log(1− F ∗(yj))− log(1− F ∗(yj+1))) n(Fn(yj))

2 (log(F ∗(yj+1))− log(F ∗(yj)))
0 0.00 0.311762095
1 0.27 0.345036701333 0.0537909266667
2 2.03 0.491444564001 0.1688056266667
3 9.89 0.221886528 0.1292382000000
4 16.96 0.225038542667 0.2190801066680
5 28.38 1.48709673333 1.3969901666700
6 236.46 0.12106449 0.1178877600000
7 268.36 0.474605439999 0.6564291533340
8 453.19 0.295214416001 0.5353877333330
9 633.26 0.093793512 0.2520768600000

10 718.68 0.449547516666 1.5963013333400
11 1414.59 0.0629061973335 0.3116266266660
12 1588.19 0.174861072 1.4057990400000
13 2535.69 0.166850634666 1.9338534800000
14 4937.93 0.00785521533335 0.2608198133330
15 5431.13 2.20090500000001.917233

total 4.92896366333 11.2389918267

This gives A2 = 4.928964 + 11.2389918267− 15 = 1.1679558267.

12. An insurance company collects the following sample:

105.13 304.10 323.11 359.09 360.43 368.63 413.47 448.81

606.88 612.58 930.35 1002.37 1161.78 1205.25 5585.37

They want to decide whether this data is better modeled as following an
inverse gamma distribution, or an inverse exponential distribution. They
calculate that the MLEs for the inverse gamma distribution as α = 1.695545
and θ = 705.7664, and the MLE for the inverse exponential distribution
as θ = 416.2476. They also calculate, for this data that

∑15
i=1 log(xi) =

95.31415 and
∑15
i=1

1
xi

= 0.03603625, and that Γ(1.695545) = 0.9078021.
You are given the following table of critical values for the chi-squared dis-
tribution at the 5% significance level. Indicate in your answer which crit-
ical value you are using. [15 mins.]

Degrees of Freedom 95% critical value
1 3.841459
2 5.991465
3 7.814728
4 9.487729
5 11.070498

For the inverse gamma distribution, the log-likelihood of the data point x
is
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log

(
705.76641.695545e−

705.7664
x

x2.695545Γ(1.695545)

)
= 1.695545 log(705.7664)− log(Γ(1.695545))− 2.695545 log(x)− 705.7664

x

= 11.21829− 2.695545 log(x)− 705.7664

x

The total log-likelihood of the data is therefore

11.21829× 15− 2.695545 (log(105.13) + log(304.10) + log(323.11) + log(359.09) + log(360.43) + log(368.63) + log(413.47)+

log(448.81) + log(606.88) + log(612.58) + log(930.35) + log(1002.37) + log(1161.78) + log(1205.25) + log(5585.37))

−705.7664

(
1

105.13
+

1

304.10
+

1

323.11
+

1

359.09
+

1

360.43
+

1

368.63
+

1

413.47
+

1

448.81
+

1

606.88
+

1

612.58
+

1

930.35
+

1

1002.37
+

1

1161.78
+

1

1205.25
+

1

5585.37

)
= −114.0824

For the inverse exponential, the log-likelihood of the data point x is

log

(
416.2476

x2
e−

416.2476
x

)
= 6.03128− 2 log(x)− 416.2476

x

The log-likelihood of the data is therefore

6.03128× 15− 2 (log(105.13) + log(304.10) + log(323.11) + log(359.09) + log(360.43) + log(368.63) + log(413.47)+

log(448.81) + log(606.88) + log(612.58) + log(930.35) + log(1002.37) + log(1161.78) + log(1205.25) + log(5585.37))

−416.2476

(
1

105.13
+

1

304.10
+

1

323.11
+

1

359.09
+

1

360.43
+

1

368.63
+

1

413.47
+

1

448.81
+

1

606.88
+

1

612.58
+

1

930.35
+

1

1002.37
+

1

1161.78
+

1

1205.25
+

1

5585.37

)
= −115.1591

The likelihood ratio statistic is therefore 2(−114.0824 − (−115.1591)) =
2.1534. This should be compared to the chi-square distribution with one
degree of freedom (since the inverse gamma has 2 degrees of freedom, and
the inverse exponential has 1). The critical value for this is 3.841459, so
the statistic is not significant. This means there is not sufficient evidence
that the inverse gamma distribution fits the data better.

13. An insurance company collects the following sample:
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0.1 0.2 0.3 2.1 16.8 28.4 45.7 53.5 74.2 99.5 159.3

183.5 206.3 273.9 461.9 482.9 1118.5 1444.7 2084.3 3984.8

They want to decide whether this data is better modeled as following an
inverse exponential distribution or a Weibull distribution. They calculate
that the MLE for the inverse exponential distribution is θ = 1.052901,
and the corresponding likelihood is −183.51. They also calculate that for
the Weibull distribution, the MLE is τ = 0.48, θ = 255.2235. The log-
likelihood is therefore −141.8325. Use AIC and BIC to determine which
distribution is a better fit for the data. [5 mins.]

The AIC is l(x) − 2p, while the BIC is l(x) − p
2 log(n). For the inverse

exponential distribution, we have p = 1, while for the Weibull distribution,
we have p = 2. For this data set, we have n = 20, so the AIC and BIC
are:

Model AIC BIC
Inverse Exponential −183.51− 2× 1 = −185.51 −183.51− 1

2 log(20) = −185.007866137
Weibull −141.8325− 2× 2 = −145.8325 −141.8325− 2

2 ln(20) = −144.828232274

14. An insurance company collects the following data sample on claims data

Claim Amount Number of Claims
Less than $5,000 1,026
$5,000–$10,000 850
$10,000–$20,000 1,182
$20,000–$50,000 942
More than $50,000 573

Its previous experience suggests that the distribution should be modelled as
following a Pareto distribution with α = 3 and θ = 28, 000. Perform a
chi-squared test to determine whether this distribution is a good fit for the
data at the 95% level. [10 mins.]

You may use the following critical values for the chi-squared distribution:

Degrees of Freedom 95% critical value
1 3.841459
2 5.991465
3 7.814728
4 9.487729
5 11.070498

The expected frequencies of each interval are:
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4573

(
1−

(
28

33

)3
)

= 1779.598

4573

((
28

33

)3

−
(

28

38

)3
)

= 963.9355

4573

((
28

38

)3

−
(

28

48

)3
)

= 921.7474

4573

((
28

48

)3

−
(

28

78

)3
)

= 696.1798

4573

(
28

78

)3

= 211.5395

Therefore, the chi-squared statistic is

(1026− 1779.598)2

1779.598
+

(850− 963.9355)2

963.9355
+

(1182− 921.7474)2

921.7474
+

(942− 696.1798)2

696.1798
+

(573− 211.5395)2

211.5395
= 1110.503

Since the parameters are not estimated the number of degrees of freedom
is 5 − 1 = 4, so the critical value is 9.487729. The null hypothesis is
rejected. The data do not fit the model well.

15. A homeowner’s house is valued at $560,000. However, the home is insured
only to a value of $360,000. The insurer requires 80% coverage for full
insurance. The home sustains $6,000 of fire damage. The deductible is
$5,000, decreasing linearly to zero for losses of $8,000. How much does
the insurer reimburse?

The insurer pays 360000
560000×0.8 = 80.3571428571% of the costs. For a loss of

$6,000, the deductible is 5000 × 2
3 , so the insurer pays

(
6000− 10000

3

)
×

0.803571428571 = $2, 142.86.

16. An auto insurance company uses an expected loss ratio of 0.81. In accident
year 2014, the earned premiums were $1,420,000. In 2014, the insurance
company made a total of $189,300 in loss payments for accident year 2014,
a total of $152,500 in 2015, and a total of $239,600 in 2016. What loss
reserves should the company hold for this accident year at the end of 2016.

The total loss payments made are $581,400. The expected total pay-
ments are 1420000× 0.81 = $1, 150, 200. Therefore the reserve should be
1150200− 581400 = $568, 800.

17. The following table shows the cumulative losses (in thousands) on claims
from one line of business of an insurance company over the past 6 years.
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Development year
Accident year 0 1 2 3 4 5

2011 751 1,022 1,448 1,133 1,473 1,493
2012 1,337 1,297 1,460 1,537 1,679
2013 1,250 1,624 1,815 1,860
2014 1,325 1,512 1,685
2015 1,471 1,536
2016 2,036

Using the average for calculating loss development factors, esimate the
total reserve needed for payments to be made in 2018 using.

We calculate the following loss development factors:

Development year Loss Development Factor

1/0 1
5

(
1022
751 + 1297

1337 + 1624
1250 + 1512

1325 + 1536
1471

)
= 1.16309083475

2/1 1
4

(
1448
1022 + 1460

1297 + 1815
1624 + 1685

1512

)
= 1.19363330156

3/2 1
3

(
1133
1448 + 1537

1460 + 1860
1815

)
= 0.95333055933

4/3 1
2

(
1473
1133 + 1679

1537

)
= 1.19623801482

5/4 1493
1473 = 1.01357773252

(a) The loss development triangle method

Using the loss development triangle method, the cumulative payments up
to 2017 are

1679∗1.01357773252+1860∗1.19623801482+1685∗0.95333055933+1536∗1.19363330156+2036∗1.16309083475 = 9734.63540369

The cumulative payments up to 2018 are

1679∗1.01357773252+1860∗1.19623801482∗1.01357773252+1685∗0.95333055933∗1.19623801482+1536∗1.19363330156∗0.95333055933+2036∗1.16309083475∗1.19363330156 = 10453.0443718

The payments to be made in 2018 are therefore 10453.0443718−9734.63540369 =
$718, 408.97.

(b) The Bornhuetter-Fergusson method. The expected loss ratio is 0.76
and the earned premiums in each year are given in the following table:

Year Earned Premiums (000’s)
2011 1943
2012 2430
2013 2623
2014 2804
2015 3356
2016 3673

Under the Bornhuetter-Fergusson method, the proportion of total pay-
ments in each year is given by:
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Development year Proportion of total payments
0 1

1.01357773252×1.19623801482×0.95333055933×1.19363330156×1.16309083475 = 0.623156693912

1 1
1.01357773252×1.19623801482×0.95333055933×1.19363330156 −

1
1.01357773252×1.19623801482×0.95333055933×1.19363330156×1.16309083475 = 0.101631145394

2 1
1.01357773252×1.19623801482×0.95333055933 −

1
1.01357773252×1.19623801482×0.95333055933×1.19363330156 = 0.140343062249

3 1
1.01357773252×1.19623801482 −

1
1.01357773252×1.19623801482×0.95333055933 = −0.040375175282

4 1
1.01357773252 −

1
1.01357773252×1.19623801482 = 0.161848426438

5 1− 1
1.01357773252 = 0.013395847289

This gives us:

Year Expected total losses Expected losses in 2018
2013 1993.48 1993.48× 0.013395847289 = 26.7043536537
2014 2131.04 2131.04× 0.161848426438 = 344.905470676
2015 2550.56 2550.56×−0.040375175282 = −102.979307067
2016 2791.48 2791.48× 0.140343062249 = 391.764851407

The total reserves needed for payments in 2018 are therefore 26.7043536537+
344.905470676− 102.979307067 + 391.764851407 = $660, 395.37.

18. An actuary is reviewing the following loss development triangles:

No. of closed claims Total paid losses on closed
claims (000’s)

Acc. Development Year Ult.
Year 0 1 2 3
2013 482 481 579 636 660
2014 672 677 786 802
2015 657 734 823
2016 745 963

Acc. Development Year
Year 0 1 2 3
2013 1176 1163 1284 1372
2014 1130 1356 1292
2015 1409 1507
2016 2262

(a) Calculate tables of percentage of claims closed and cumulative average
losses.

Percentage of closed claims Average paid losses per claim
on closed claims (000’s)

Acc. Development Year Ult.
Year 0 1 2 3
2013 73.03 72.88 87.73 96.36
2014 83.79 84.41 98.00
2015 79.83 89.19
2016 77.36

Acc. Development Year
Year 0 1 2 3
2013 2, 440 2, 418 2, 218 2, 157
2014 1, 682 2, 003 1, 644
2015 2, 145 2, 053
2016 3, 036

(b) Adjust the total paid losses to use the current disposal rate.

Acc. Development Year
Year 0 1 2 3
2013 1246 1423 1434 1372
2014 1043 1433 1292
2015 1365 1507
2016 2262
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