ACSC/STAT 4703, Actuarial Models II

Fall 2017
Toby Kenney
Homework Sheet 1
Due: Friday 29th September: 11:30 PM

Basic Questions

1. Aggregate payments have a compund distribution. The frequency distribution is negative binomial with $r=2$ and $\beta=2.5$. The severity distribution is an inverse gamma distribution with $\alpha=2.5$ and $\theta=15000$. Use a Pareto approximation to aggregate payments to estimate the probability that aggregate payments are more than $\$ 150,000$.
2. Loss amounts follow a gamma distribution with $\alpha=5$ and $\theta=5,000$. The distribution of the number of losses is given in the following table:

Number of Losses	Probability
0	0.08
1	0.31
2	0.39
3	0.22

Assume all losses are independent and independent of the number of losses. The insurance company buys excess-of-loss reinsurance on the part of the loss above $\$ 100,000$. Calculate the expected payment for this excess-of-loss reinsurance.
3. An insurance company models loss frequency as binomial with $n=84, p=$ 0.14 , and loss severity as inverse exponential with $\theta=20,000$. Calculate the expected aggregate payments if there is a policy limit of $\$ 50,000$ and a deductible of $\$ 10,000$ applied to each claim.
4. Claim frequency follows a negative binomial distribution with $r=2$ and $\beta=8.5$. Claim severity (in thousands) has the following distribution:

Severity	Probability
1	0.2
2	0.5
3	0.18
4	0.07
5 or more	0.05

Use the recursive method to calculate the exact probability that aggregate claims are at least 5 .
5. Use an arithmetic distribution $(h=1)$ to approximate a Pareto distribution with $\alpha=3$ and $\theta=40$.
(a) Using the method of rounding, calculate the mean of the arithmetic approximation.
(b) Using the method of local moment matching, matching 1 moment on each interval, estimate the probability that the value is larger than 20.5.

Standard Questions

6. The number of claims an insurance company receives follows a negative binomial distribution with $r=160$ and $\beta=14$. Claim severity follows a negative binomial distribution with $r=5$ and $\beta=1.2$. Calculate the probability that aggregate losses exceed $\$ 17,000$.
(a) Starting the recurrence 6 standard deviations below the mean [You need to calculate the recurrence up to $f_{s}(20,000)$.]
(b) Using a suitable convolution.
