
ACSC/STAT 4703, Actuarial Models II
Fall 2017

Toby Kenney
Homework Sheet 2
Model Solutions

Basic Questions

1. An insurance company has the following portfolio of workers compensation
insurance policies:

Type of worker Number Probability mean standard
of claim claim deviation

Manual labourer 1700 0.01 $54,000 $129,000
Technician 800 0.002 $20,000 $39,000
Manager 200 0.001 $25,000 $20,000

Calculate the cost of reinsuring losses above $10,000,000, if the loading
on the reinsurance premium is one standard deviation above the expected
claim payment on the reinsurance policy using a gamma approximation
for the aggregate losses on this portfolio.

The aggregate losses have mean 1700×0.01×54000+800×0.002×20000+
200×0.001×25000 = $955, 000 and variance 1700×0.01×1290002+800×
0.002×390002 +200×0.001×200002 +1700×0.01×0.99×540002 +800×
0.002× 0.998× 200002 + 200× 0.001× 0.999× 250002 = 335, 250, 475, 000.

Matching moments for the gamma distribution gives

αθ = 955000

αθ2 = 335250475000

α =
9550002

335250475000
= 2.7204286586

θ =
335250475000

955000
= 351047.617801

This means that 10000000
θ = 28.4861639644. If we denote this by a, then

expected claim on the reinsurance is

θ

∫ ∞
a

(x− a)xα−1e−x

Γ(α)
dx = θ

(∫ ∞
a

αxαe−x

Γ(α+ 1)
dx− a

∫ ∞
a

xα−1e−x

Γ(α)

)
= 0.00003403306
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The expected square of the reinsurance payment is:

θ2
∫ ∞
a

(x− a)2xα−1e−x

Γ(α)
dx = θ2

(∫ ∞
a

α(α+ 1)xα+1e−x

Γ(α+ 2)
dx− 2aα

∫ ∞
a

xαe−x

Γ(α+ 1)
dx+ a2

∫ ∞
a

xα−1e−x

Γ(α)
dx

)
= 25.27237

The variance of the reinsurance payment is therefore 25.27237−0.000034033062 =
25.27237, so the premium for the reinsurance is 0.00003403306+

√
25.27237 =

5.027197.

2. An insurance company is modelling claim data as following a Pareto dis-
tribution with α = 5. It collects the following sample of claims:

24.2 26.5 56.9 68.9 72.3 116.8 128.5 145.6 151.3 173.9

181.8 189.4 206.4 229.3 243.3 273.6 303.7 344.0 367.0

375.0 378.5 465.4 500.9 633.9 635.1 638.6 641.9 748.7

2047.2 2895.9

The MLE for θ is 1744.23679. Graphically compare this empirical distri-
bution with the best fitting Pareto distribution with α = 5. Include the
following plots:

(a) Comparisons of F (x) and F ∗(x)

R code:

plot(c(0,as.vector(rbind(hw2q2,hw2q2))),

(as.vector(rbind(0:30,0:30))[1:61])/30,type=’l’,

xlab="x",ylab="F(x)")

points(1:3000,1-(1744.23679/(1744.23679+1:3000))^5,type=’l’,col="red")
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(b) Comparisons of f(x) and f∗(x)

R code:

hist(hw2q2,probability=T,xlab=x,ylab="f(x)")

points(1:3000,5*1744.23679^5/(1744.23679+1:3000)^6,type=’l’,col="red")
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Histogram of hw2q2
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(c) A plot of D(x) against x.

R code:

hw2q2Fx<-rowSums((rep(1,3000)%*%t(hw2q2))<((1:3000)%*%t(rep(1,30))))/30

hw2q2Fstarx<-1-1744.23679^5/(1744.23679+1:3000)^5

plot(1:3000,hw2q2Fx-hw2q2Fstarx,type=’l’,xlab="x",ylab="D(x)")

abline(h=0)
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(d) A p-p plot of F (x) against F ∗(x).

R code:

plot(hw2q2Fx,hw2q2Fstarx,type=’l’,xlab=expression(F[n](x)),ylab="F*(x)")

abline(0,1,col="red")
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3. For the data in Question 2, calculate the following test statistics for the
goodness of fit of the Pareto distribution with α = 5 and θ = 1744.23679:

(a) The Kolmogorov-Smirnov test.

From the plot of D(x), it is easy to see that the largest absolute values
of D(x) occur just before 116.8 and just after 641.9. The corresponding
values are:

x Fn(x) F ∗(x) |D(x)|

116.8− 5
30 1−

(
1744.23679

1744.23679+116.8

)5
= 0.276809987586 0.110143320919

641.9+ 27
30 1−

(
1744.23679

1744.23679+641.9

)5
= 0.791286506023 0.108713493977

So the Kolmogorov-Smirnov statistic is 0.108713493977. For a distribu-
tion with no estimated parameters, the critical value would be 1.358√

30
=

0.247935744364 so the statistic is not significant.

6



(b) The Anderson-Darling test.

The Anderson-Darling test statistic for a finite sample is given by

A2 = −n+ n

k∑
j=0

(1− Fn(yj))
2 (log(1− F ∗(yj))− log(1− F ∗(yj+1)))

+ n

k∑
j=0

(Fn(yj))
2 (log(F ∗(yj+1))− log(F ∗(yj)))

For our dataset, we calculate this in the following table:
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yj Fn(yj) F ∗(yj) (1− Fn(yj))
2 Fn(yj)

2

(log(1− F ∗(yj))− log(1− F ∗(yj+1))) (log(F ∗(yj+1))− log(F ∗(yj)))
0.0 0 0 0.0688944825891 0

24.2 1
30 0.066574832511 0.00607266774222 0.0000965893196888 —

26.5 2
30 0.072621208235 0.0741415299978 0.00317282943729

56.9 3
30 0.148286116488 0.0268934697426 0.0017190990839

68.9 4
30 0.176100267654 0.00703583523003 0.000759043152534

72.3 5
30 0.183781897108 0.0840344468694 0.0113772664633

116.8 6
30 0.276809987586 0.0200548435718 0.0031005768812

128.5 7
30 0.299120268244 0.0267132827787 0.00539201067743

145.6 8
30 0.330260804256 0.00809784182622 0.00212318256142

151.3 9
30 0.340270167722 0.0290379588141 0.00951877622223

173.9 10
30 0.378230611629 0.00913360435199 0.00365458589533

181.8 11
30 0.390877951332 0.00789820258351 0.00402424893619

189.4 12
30 0.402754742157 0.015755942394 0.0098507008872

206.4 13
30 0.428330321439 0.0187390485379 0.0136949107138

229.3 14
30 0.460736434614 0.0100534330487 0.00867654065595

243.3 15
30 0.479463328255 0.0189124543608 0.0190319979583

273.6 16
30 0.517389204223 0.0161229609665 0.0183300156737

303.7 17
30 0.551828254907 0.0182963402675 0.0233425856495

344.0 18
30 0.59343639487 0.00876309072064 0.0129105479696

367.0 19
30 0.61510480751 0.00254240291849 0.00467440870336

375.0 20
30 0.62231495463 0.000916764260444 0.00221088497733

378.5 21
30 0.625418367445 0.0180548814547 0.0506357619094

465.4 22
30 0.693505453403 0.00566694993422 0.0179039290013

500.9 23
30 0.716982571864 0.0156666255714 0.0553287732978

633.9 24
30 0.787752269611 0.0001008938888 0.000434253456

635.1 25
30 0.788286957466 0.000204155178611 0.00136440093819

638.6 26
30 0.789837256762 0.000123017406222 0.00137692893312

641.9 27
30 0.791286506023 0.0021892898466 0.0409549696185

748.7 28
30 0.832324010273 0.00931741329541 0.141739807873

2047.2 29
30 0.979393315918 0.00112221554938 0.0124171470076

2895.9 30
30 0.992494609477 0 0.00753369769297

0.530556045699 0.487350471547

The Anderson-Darling statistic is therefore 30(0.530556045699+0.487350471547−
1) = 0.5371955175. For a fully specified distribution, the critical value is
2.492: for the Pareto distribution with one parameter estimated, the crit-
ical value is even higher, so we cannot reject the Pareto distribution with
α = 5.

(c) The chi-square test, dividing into the intervals 0–200, 200–400, and
more than 400.

We have the following:

8



interval Frequency (O) Expected frequency (E) (O−E)2

E

0–200 12 12.56577 0.02547362
200–400 9 6.748975 0.7507975
> 400 9 10.68525 0.2657933

1.042064

The chi-square statistic is 1.042. This is compared to a chi-squared dis-
tribution with 3− 1− 1 = 1 degrees of freedom. The critical value at the
95% significance level is 3.841459, so it is not significant.

4. For the data in Question 2, perform a likelihood ratio test to determine
whether a Pareto distribution with fixed α = 5, or a Pareto distribution
with α freely estimated is a better fit for the data. [The MLE for the
general Pareto distribution is α = 4.641528 and θ = 1599.8973.]

The log-likelihood of a Pareto distribution is

l(x) =
∑

log(α) + α log(θ)− (α+ 1) log(θ + xi)

For α = 5, θ = 1744.23679, this is −211.74632212. For the Pareto dis-
tribution with α = 4.641528 and θ = 1599.8973, the log-likelihood is
−211.74291824. The log likelihood statistic is 2(−211.74291824−(−211.74632212)) =
0.00680776. We compare this to a chi-squared distribution with 1 degree
of freedom and conclude that a Pareto distribution with α = 5 is the
better fit.

5. For the data in Question 2, use AIC and BIC to choose between a Pareto
distribution with α = 4 and a gamma distribution for the data. [The MLE
for the gamma distribution is α = 1.021439 and θ = 432.8697.]

In Question 4, we calculated the log-likelihood for the Pareto distribu-
tion was −211.74291824. The log-likelihood for a gamma distribution is∑

(α − 1) log(xi) − xi
θ − α log(θ) − log(Γ(α)) = −212.7452. The gamma

distribution has two parameters, whereas the Pareto distribution with α
fixed has one parameter. The AIC for the Pareto distribution is therefore
−211.74291824−2×1 = −213.74291824, whereas the AIC for the gamma
distribution is −212.7452− 2× 2 = −216.7452. There are 30 data points,

so the BIC for the Pareto distribution is −211.74291824 − 1×log(30)
2 =

−213.4435, while the BIC for the gamma distribution−212.7452− 2×log(30)
2 =

−216.1464. Both AIC and BIC prefer the Pareto distribution.

Standard Questions

6. An insurance company insures drivers in three provinces and has the fol-
lowing estimates:
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Province Probability mean standard
of claim claim deviation

Nova Scotia 0.08 $3,200 $5,900
New Brunswick 0.03 $2,100 $3,400
PEI 0.02 $2,300 $4,600

The insurance company estimates the mean µ and standard deviation σ
for the aggregate loss distribution, and buys stop-loss reinsurance for ag-

gregate losses more than 3µ − µ2

σ . The reinsurer models aggregate losses
as following a Pareto distribution and sets its premium as 125% of the
expected claims on the stop-loss policy. The insurer already insures 2,200
drivers in Nova Scotia, and 980 drivers in New Brunswick. How many
drivers should it insure in PEI in order to minimise the reinsurance cost
as a proportion of expected claims on the policy?

Let the number of drivers from the three provinces be a, b and c. The
expected aggregate losses are then µ = 256a + 63b + 46c. The variance
of aggregate losses is σ2 = 3538464a + 475131b + 526884c. For a Pareto
distribution with parameters α and θ, attachment point of the reinsurance

is a = θ
α−1 +

√
θ2

(α−1)2(α−2) , and the expected payment on the reinsurance

is∫ ∞
a

(x− a)
αθα

(θ + x)α+1
dx =

∫ ∞
a

(θ + x− (θ + a))
αθα

(θ + x)α+1
dx

= αθα
(∫ ∞

a

1

(θ + x)α
dx− (θ + a)

∫ ∞
a

1

(θ + x)α+1
dx

)
= αθα

[
− 1

(α− 1)(θ + x)α−1
dx+ (θ + a)

1

α(θ + x)α
dx

]∞
a

= αθα
(

1

(α− 1)(θ + a)α−1
− (θ + a)

1

α(θ + a)α

)
= α

θα

(θ + a)α−1

(
1

(α− 1)
− 1

α

)
=

θα

(α− 1)(θ + a)α−1
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Since we have

θ

α− 1
= µ

θ2

(α− 1)2(α− 2)
= σ2

α =
µ2

σ2
+ 2

θ = µ

(
µ2

σ2
+ 1

)
a = 3µ− µ2

σ

We get
θ

θ + a
=

µ2 + σ2

µ2 − µσ + 4σ2

The expected payment on the stop-loss insurance is

µ

(
µ2 + σ2

µ2 − µσ + 4σ2

)µ2+σ2

σ2

We are therefore aiming to minimise(
µ2 + σ2

µ2 − µσ + 4σ2

)µ2+σ2

σ2

If we let r = µ
σ then this expression becomes(

r2 + 1

r2 − r + 4

)r2+1

Differentiating the logarithm of this with respect to r, we see that the
minimum occurs at a solution to

2r log

(
r2 + 1

r2 − r + 4

)
+ (r2 + 1)

(
−r2 + 6r + 1

(r2 − r + 4)(r2 + 1)

)
= 0

2r log

(
r2 + 1

r2 − r + 4

)
=
r2 − 6r − 1

r2 − r + 4

Numerically, this has solutions at 0.250706931 and 0.83089422. The first
is a local maximum, and the second is a local minimum. We can quickly
check that r = 0.83089422 gives a lower value than r = 0, so we aim to
achieve r = 0.83089422.
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That is, we are aiming to solve

256a+ 63b+ 46c√
3538464a+ 475131b+ 526884c

= 0.83089422

256a+ 63b+ 46c = 0.83089422
√

3538464a+ 475131b+ 526884c

(256a+ 63b+ 46c)2 = 0.830894222(3538464a+ 475131b+ 526884c)

We have 200 and b = 96, so the equation becomes

(510224230.309−
√

510224230.3092 − 4 ∗ 7396 ∗ 2757262617.69)/2/7396

5.40444469984

68981.1058728

(57248 + 86c)2 = 0.830894222(753305376 + 477604c)

7396c2 − 510224230.309c+ 2757262617.69 = 0c = 68981.1058728 or 5.40444469984

7. An insurance company collects a sample of 25 past claims, and attempts
to fit a distribution to the claims. Based on experience with other claims,
the company believes that an exponential distribution with mean θ = 2, 400
may be appropriate to model these claims. It constructs the following p-p
plot to compare the sample to this distribution:
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(a) How many of the points in their sample were less than 3,000?

We have that F ∗(3000) = 1− e− 3000
2400 = 0.7134952, so we see from the plot

that the corresponding Fn(3000) = 0.84, which corresponds to 0.84×25 =
21 samples.
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(b) Which of the following statements best describes the fit of the exponen-
tial distribution to the data:

(i) The exponential distribution assigns too much probability to high values
and too little probability to low values.

(ii) The exponential distribution assigns too much probability to low values
and too little probability to high values.

(iii) The exponential distribution assigns too much probability to tail values
and too little probability to central values.

(iv) The exponential distribution assigns too much probability to central
values and too little probability to tail values.

(i) — From the p − p plot, we see that Fn(x) > F ∗(x) for almost all x,
which means that the model assigns too little probability to small values
of x.

(c) Which of the following plots shows the empirical distribution function?
Justify your answer.

(i) (ii) (iii)
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From the p− p plot, we have that Fn(x) < F ∗(x) for nearly all x. This is the case in plot (iii) but not in the
other plots.
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