ACSC/STAT 4703, Actuarial Models II
Fall 2017

Toby Kenney

Homework Sheet 2
Model Solutions

Basic Questions

. An insurance company has the following portfolio of workers compensation
isurance policies:
Type of worker Number  Probability —mean standard

of claim claim deviation
Manual labourer 1700 0.01 $54,000 $129,000
Technician 800 0.002 $20,000  $39,000
Manager 200 0.001 $25,000 $20,000

Calculate the cost of reinsuring losses above $10,000,000, if the loading
on the reinsurance premium is one standard deviation above the expected
claim payment on the reinsurance policy using a gamma approximation
for the aggregate losses on this portfolio.

The aggregate losses have mean 1700 x 0.01 x 54000+ 800 x 0.002 x 20000+
200 x 0.001 x 25000 = $955, 000 and variance 1700 x 0.01 x 1290002 4800 x
0.002 x 390002 4200 x 0.001 x 200002 41700 x 0.01 x 0.99 x 540002 + 800 x
0.002 x 0.998 x 200002 + 200 x 0.001 x 0.999 x 250002 = 335, 250, 475, 000.

Matching moments for the gamma distribution gives

afd = 955000

ab? = 335250475000
9550002

— T 97204286586
& = 335250475000
335250475000

— e 351047.617801

525000 351047.61780

This means that % = 28.4861639644. If we denote this by a, then
expected claim on the reinsurance is

®(x—a)z* te® /°° ax®e ™ /°° z@le™®
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The expected square of the reinsurance payment is:
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= 25.27237

The variance of the reinsurance payment is therefore 25.27237—0.000034033062 =
25.27237, so the premium for the reinsurance is 0.00003403306++/25.27237 =
5.027197.

. An insurance company is modelling claim data as following a Pareto dis-
tribution with o = 5. It collects the following sample of claims:

2.2 26.5 56.9 68.9 72.3 116.8 128.5 145.6 151.3 173.9
181.8 189.4 206.4 229.3 243.3 273.6 303.7 344.0 367.0
375.0 378.5 465.4 500.9 633.9 635.1 638.6 641.9 7T48.7
2047.2 2895.9

The MLE for 0 is 1744.23679. Graphically compare this empirical distri-
bution with the best fitting Pareto distribution with o = 5. Include the
following plots:

(a) Comparisons of F(x) and F*(z)
R code:

plot(c(0,as.vector(rbind(hw2q2,hw2q2))),
(as.vector(rbind(0:30,0:30)) [1:61])/30,type="1",
xlab="x",ylab="F(x)")
points(1:3000,1-(1744.23679/(1744.23679+1:3000)) "5,type="1’,col="red")
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(b) Comparisons of f(x) and f*(x)
R code:

hist (hw2q2,probability=T,xlab=x,ylab="f(x)")
points(1:3000,5%1744.23679°5/(1744.23679+1:3000) "6,type="1’,col="red")
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(c) A plot of D(x) against x.
R code:

hw2q2Fx<-rowSums ((rep(1,3000) %*%t (hw2q2) )< ((1:3000) %*%t (rep(1,30)))) /30
hw2q2Fstarx<-1-1744.23679°5/(1744.23679+1:3000) "5
plot(1:3000,hw2q2Fx-hw2q2Fstarx,type=’1’,xlab="x",ylab="D(x)")

abline (h=0)
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(d) A p-p plot of F(x) against F*(x).
R code:

plot (hw2q2Fx,hw2q2Fstarx,type=’1’ ,xlab=expression(F[n] (x)),ylab="F*(x)")
abline(0,1,col="red")
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3. For the data in Question 2, calculate the following test statistics for the
goodness of fit of the Pareto distribution with o =5 and 6 = 1744.23679:

(a) The Kolmogorov-Smirnov test.

From the plot of D(z), it is easy to see that the largest absolute values
of D(z) occur just before 116.8 and just after 641.9. The corresponding
values are:

x Fo(z) Fr(x) _ [D()]
— 744. 7 —
1687 & 1 (rBaEios) = 0.276809987586  0.110143320019
5
27 1744.23679 —
64197 1 (BB ) = 0.791286506023 0108713493077

So the Kolmogorov-Smirnov statistic is 0.108713493977. For a distribu-
tion with no estimated parameters, the critical value would be i\/%g =
0.247935744364 so the statistic is not significant.



(b) The Anderson-Darling test.

The Anderson-Darling test statistic for a finite sample is given by

k
A= —ntn) (1= Fu(y;))* (log(l - F*(y;)) — log(1 — F*(y;+1)))
§=0

k
Y (Faly)))? log(F* (yj41)) — log(F(y;)))
7=0

For our dataset, we calculate this in the following table:



yi  Fu(ys) F*(y;) (1— Fa(y)))? Fou(
(log(1 = F*(y;)) — log(1 — F*(y;+1))) (log(F™(y;+1)) — log(F*(s

0.0 0 0 0.0688944825891
24.2 L 0.066574832511 0.00607266774222 0.000096589319¢
26.5 2 0.072621208235 0.0741415299978 0.0031728294:
56.9 % 0.148286116488 0.0268934697426 0.001719099
68.9 A 0.176100267654 0.00703583523003 0.00075904315;
72.3 % 0.183781897108 0.0840344468694 0.011377266:
116.8 L (.276809987586 0.0200548435718 0.003100576:
128.5 % 0.299120268244 0.0267132827787 0.0053920106"
145.6 = 0.330260804256 0.00809784182622 0.0021231825¢
151.3 S 0.340270167722 0.0290379588141 0.0095187762:
173.9 1 0.378230611629 0.00913360435199 0.0036545858
181.8 1 0.300877951332 0.00789820258351 0.0040242489:
189.4 1 0402754742157 0.015755942394 0.009850700:
206.4 B 0.428330321439 0.0187390485379 0.013694910
229.3 % 0.460736434614 0.0100534330487 0.0086765406:
243.3 15 0.479463328255 0.0189124543608 0.019031997
273.6 B 0517389204223 0.0161229609665 0.018330015
303.7 B 0.551828254907 0.0182963402675 0.023342585!
344.0 B ) 50343630487 0.00876309072064 0.012910547
367.0 B 61510480751 0.00254240291849 0.0046744087(
375.0 B 62231495463 0.000916764260444 0.0022108849°
378.5 B 625418367445 0.0180548814547 0.050635761
465.4 B 0.693505453403 0.00566694993422 0.017903929
500.9 B 0716982571864 0.0156666255714 0.055328773;
633.9 3 0787752260611 0.0001008938888 0.00043425:
635.1 B 0788286057466 0.000204155178611 0.0013644009:
638.6 B 0780837256762 0.000123017406222 0.0013769289:
641.9 % 0791286506023 0.0021892898466 0.040954969
748.7 B 0.832324010273 0.00931741329541 0.14173980°
2047.2 B 0.979393315018 0.00112221554938 0.012417147(
2895.9 % 0.992494609477 0 0.0075336976

0.530556045699

0.48735047

The Anderson-Darling statistic is therefore 30(0.530556045699+-0.487350471547—
1) = 0.5371955175. For a fully specified distribution, the critical value is
2.492: for the Pareto distribution with one parameter estimated, the crit-
ical value is even higher, so we cannot reject the Pareto distribution with

a = 5.

(¢) The chi-square test, dividing into the intervals 0-200, 200-400, and
more than 400.

We have the following:



interval ~ Frequency (O) Expected frequency (E) (©O-£)*

E
0-200 12 12.56577 0.02547362
200-400 9 6.748975 0.7507975
> 400 9 10.68525 0.2657933
1.042064

The chi-square statistic is 1.042. This is compared to a chi-squared dis-
tribution with 3 —1 — 1 = 1 degrees of freedom. The critical value at the
95% significance level is 3.841459, so it is not significant.

. For the data in Question 2, perform a likelihood ratio test to determine
whether a Pareto distribution with fixed « = 5, or a Pareto distribution
with « freely estimated is a better fit for the data. [The MLE for the
general Pareto distribution is o = 4.641528 and 6 = 1599.8973.]

The log-likelihood of a Pareto distribution is

l(x) = Z log(a) + alog(0) — (e + 1) log(6 + ;)

For a = 5, 6 = 1744.23679, this is —211.74632212. For the Pareto dis-

tribution with o = 4.641528 and 6 = 1599.8973, the log-likelihood is
—211.74291824. The log likelihood statistic is 2(—211.74291824—(—211.74632212)) =
0.00680776. We compare this to a chi-squared distribution with 1 degree

of freedom and conclude that a Pareto distribution with o = 5 is the

better fit.

. For the data in Question 2, use AIC and BIC to choose between a Pareto
distribution with o« = 4 and a gamma distribution for the data. [The MLE
for the gamma distribution is o = 1.021439 and 6 = 432.8697.]

In Question 4, we calculated the log-likelihood for the Pareto distribu-
tion was —211.74291824. The log-likelihood for a gamma distribution is
> (a —1)log(x;) — % — alog(f) — log(I'(ar)) = —212.7452. The gamma
distribution has two parameters, whereas the Pareto distribution with «
fixed has one parameter. The AIC for the Pareto distribution is therefore
—211.74291824 — 2 x 1 = —213.74291824, whereas the AIC for the gamma
distribution is —212.7452 — 2 x 2 = —216.7452. There are 30 data points,
so the BIC for the Pareto distribution is —211.74291824 — %g(m) =

—213.4435, while the BIC for the gamma distribution —212.7452— 2X1%630 —
—216.1464. Both AIC and BIC prefer the Pareto distribution.

Standard Questions

. An insurance company insures drivers in three provinces and has the fol-
lowing estimates:



Province Probability mean standard

of claim claim  deviation
Nowva Scotia 0.08 $3,200  $5,900
New Brunswick 0.03 $2,100 $3,400
PEI 0.02 $2,300 $4,600

The insurance company estimates the mean p and standard deviation o
for the aggregate loss distribution, and buys stop-loss reinsurance for ag-
gregate losses more than 3u — g The reinsurer models aggregate losses
as following a Pareto distribution and sets its premium as 125% of the
expected clatms on the stop-loss policy. The insurer already insures 2,200
drivers in Nova Scotia, and 980 drivers in New Brunswick. How many
drivers should it insure in PEI in order to minimise the reinsurance cost

as a proportion of expected claims on the policy?

Let the number of drivers from the three provinces be a, b and c¢. The
expected aggregate losses are then p = 256a + 63b + 46¢. The variance
of aggregate losses is 02 = 3538464a + 475131b + 526884c. For a Pareto
distribution with parameters v and 6, attachment point of the reinsurance

92
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isa=
is
o af® o af®
/a (f—a)md(ﬂ:/@ (9+$_(9+a))mdf£
1

= af” (/aoo(a_’_lsr)adac—w—i-a)/:owdx

1
(@=1)(0+x)*
1

o 1
=af Qa—uw+anf*9+“aw+aw>

:awfgalﬂain‘;)

J— oa
~ (a—1)(0+a)o?

ab” [—

10

1
1 dl’ + (0 + a)m d.’E:|

)

oo

a



Since we have
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We get
0 N’2+U2

0+a p2— po+ 4o
The expected payment on the stop-loss insurance is

w2402

U2+02 -2
K u2 — po + 4o

We are therefore aiming to minimise

2, ,2

4?4 o2 L
<u2 —u0+402)

If we let » = £ then this expression becomes

7"2+1 7“2-‘,-1
<r2 —r4 4>

Differentiating the logarithm of this with respect to r, we see that the
minimum occurs at a solution to

r24+1 9 —r2 4+ 6r+1
2rlog <r2—r+4> +(r +1)((7“2—7"+4)(r2—i-1)> =0

9 r24+1 r2—6r—1
rlo =
& r2 —r4+4 r2 —r44

Numerically, this has solutions at 0.250706931 and 0.83089422. The first
is a local maximum, and the second is a local minimum. We can quickly
check that r = 0.83089422 gives a lower value than » = 0, so we aim to
achieve r = 0.83089422.
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That is, we are aiming to solve

256a + 63b + 46¢
V/3538464a + 475131b + 526884c
256a + 63b + 46¢ = 0.830894221/3538464a + 475131b + 526884c

(256a + 63b + 46¢)* = 0.830894222(3538464a + 475131 + 526884c¢)

= 0.83089422

We have 200 and b = 96, so the equation becomes

(510224230.309 — /510224230.3092 — 4 * 7396 * 2757262617.69) /2/7396
5.40444469984

68981.1058728

(57248 + 86¢)* = 0.830894222 (753305376 + 477604c)
7396¢% — 510224230.309¢ + 2757262617.69 = Oc = 68981.1058728 or 5.

. An insurance company collects a sample of 25 past claims, and attempts
to fit a distribution to the claims. Based on experience with other claims,
the company believes that an exponential distribution with mean 8 = 2,400
may be appropriate to model these claims. It constructs the following p-p
plot to compare the sample to this distribution:
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(a) How many of the points in their sample were less than 3,0007

We have that F*(3000) = 1 — e~ 2808 = 0.7134952, so we see from the plot
that the corresponding F},(3000) = 0.84, which corresponds to 0.84 x 25 =
21 samples.
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(b) Which of the following statements best describes the fit of the exponen-
tial distribution to the data:

(i) The exponential distribution assigns too much probability to high values
and too little probability to low values.

(i) The exponential distribution assigns too much probability to low values
and too little probability to high values.

(iii) The exponential distribution assigns too much probability to tail values
and too little probability to central values.

(iv) The exponential distribution assigns too much probability to central
values and too little probability to tail values.

(i) — From the p — p plot, we see that F,(z) > F*(z) for almost all z,
which means that the model assigns too little probability to small values
of z.

(c) Which of the following plots shows the empirical distribution function?
Justify your answer.

(i) (i) (i)
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From the p — p plot, we have that F,,(x) < F*(x) for nearly all x. This is the case in plot (iii) but not in the
other plots.
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