ACSC/STAT 4703, Actuarial Models II

 Fall 2017Toby Kenney
Homework Sheet 3
Model Solutions

Basic Questions

1. A homeowner's house is valued at \$420,000, but is insured at \$270,000. The insurer requires 75% coverage for full insurance. The home sustains $\$ 3,100$ from a fire. The policy has a deductible of $\$ 2,000$, which decreases linearly to zero when the total cost of the loss is $\$ 6,000$. How much does the insurance company reimburse?
The proportion of coinsurance is $\frac{270000}{420000 \times 0.75}=\frac{6}{7}$ The deductible is $2000 \frac{6000-3100}{6000-2000}=$ $\$ 1,450$. The insurance therefore pays $(3100-1450) \times \frac{6}{7}=\frac{990}{7}=\$ 141.43$.
2. A homeowners insurance company has three types of coverages with different expected loss ratios, has the following data on recent claims:

Policy Type	Policy Year	Earned Premiums	Expected Loss Ratio	Losses paid to date
Homeowner's	2014	$\$ 400,000$	0.72	$\$ 270,000$
	2015	$\$ 480,000$	0.72	$\$ 130,000$
	2016	$\$ 590,000$	0.74	$\$ 70,000$
Tennant's	2014	$\$ 70,000$	0.83	$\$ 58,600$
	2015	$\$ 72,000$	0.83	$\$ 44,300$
	2016	$\$ 75,000$	0.83	$\$ 29,400$
Fire insurance	2014	$\$ 300,000$	0.65	$\$ 126,000$
	2015	$\$ 350,000$	0.65	$\$ 85,000$
	2016	$\$ 380,000$	0.67	$\$ 17,000$

Calculate the loss reserves at the end of 2016.
We use the expected loss ratios to calculate the expected total payments for each policy year:

Policy Type	Policy Year	Expected Payments	Losses paid to date	Reserves needed
Homeowner's	2014	$\$ 288,000$	$\$ 270,000$	$\$ 18,000$
	2015	$\$ 345,600$	$\$ 130,000$	$\$ 215,600$
	2016	$\$ 436,600$	$\$ 70,000$	$\$ 366,600$
Tennant's	2014	$\$ 58,100$	$\$ 58,600$	$\$ 0$
	2015	$\$ 59,760$	$\$ 44,300$	$\$ 15,460$
	2016	$\$ 62,250$	$\$ 29,400$	$\$ 32,850$
Fire insurance	2014	$\$ 195,000$	$\$ 126,000$	$\$ 69,000$
	2015	$\$ 227,500$	$\$ 85,000$	$\$ 142,500$
	2016	$\$ 254,600$	$\$ 17,000$	$\$ 237,600$

The total reserves are therefore $\$ 1,097,610$.
3. The following table shows the paid losses on claims from one line of business of an insurance company over the past 6 years.

		Development year					
Accident year	Earned premiums	0	1	2	3	4	5
2011	3,156	870	95	253	727	-425	851
2012	3,930	844	184	709	409	300	
2013	3,248	1,394	258	184	-3		
2014	4,955	1,291	54	856			
2015	4,142	1,422	579				
2016	4,806	1,754					

Assume that all payments on claims arising from accidents in 2011 have now been settled. Estimate the future payments arising each year from open claims arising from accidents in each calendar year using
(a) The loss development triangle method

We first calculate the cumulative loss development:

	Development year						
Accident year	0	1	2	3	4	5	
2011	870	965	1,218	1,945	1,520	2,371	
2012	844	1,028	1,737	2,146	2,446		
2013	1,394	1,652	1,836	1,833			
2014	1,291	1,345	2,201				
2015	1,422	2,001					
2016	1,754						

The loss development factors are therefore given by
$\frac{6991}{5821}=1.20099639237$
$\frac{6992}{4990}=1.40120240481$
$\frac{5924}{4791}=1.23648507618$
$\frac{3966}{4091}=0.969445123442$
$\frac{2371}{1520}=1.55986842105$

We use these factors to estimate the following developed losses

	Development year						
Accident year	0	1	2	3	4	5	
2011						2,371	
2012					2,446	3,815	
2013				1,833	1,777	2,772	
2014			2,201	2,722	2,638	4,115	
2015		2,001	2,804	3,467	3,361	5,243	
2016	1,754	2,107	2,952	3,650	3,538	5,519	

If we use the average, the loss development factors are:

```
\(\frac{1}{5}\left(\frac{965}{870}+\frac{1028}{844}+\frac{1652}{1394}+\frac{1345}{1291}+\frac{2001}{1422}\right)=1.19225696533\)
\(\frac{1}{4}\left(\frac{1218}{965}+\frac{1737}{1028}+\frac{1836}{1652}+\frac{2201}{1345}\right)=1.42491906345\)
\(\frac{1}{3}\left(\frac{1945}{1218}+\frac{2146}{1737}+\frac{1833}{1836}\right)=1.27690319572\)
\(\frac{1}{2}\left(\frac{1520}{1945}+\frac{2446}{2146}\right)=0.96064298498\)
\(\frac{2371}{1520}=1.55986842105\)
```

(b) The Bornhuetter-Ferguson method with expected loss ratio 0.76 .

Using an expected loss ratio of 0.76 , the expected ultimate losses are:

Accident year	Expected ultimate losses
2011	2398.56
2012	2986.80
2013	2468.48
2014	3765.80
2015	3147.92
2016	3652.56

Using these and the loss development factors calculated above, the expected payments are

	Development year					
Accident year	1	2	3	4	5	
2011	153.21	367.29	303.36	-48.46	860.89	
2012	190.79	457.37	377.75	-60.35	1072.02	
2013	157.68	378.00	312.20	-49.88	885.99	
2014	240.55	576.66	476.28	-76.09	1351.62	
2015	201.08	482.04	398.13	-63.61	1129.85	
2016	233.32	559.32	461.96	-73.80	1310.98	

Using the average to calculate loss development factors, the proportion of total losses paid in each year is

Development year	Proportion of losses
0	0.307632333161
1	0.059144458813
2	0.155850450938
3	0.144717153734
4	-0.026264683444
5	0.358920286798

	Development year					
Accident year	1	2	3	4	5	
2011						
2012				-64.83	885.99	
2013			544.98	-98.91	1351.62	
2014			590.60	455.56	-82.68	1129.85
2015		49.95	528.59	-95.93	1310.98	
2016	216.03	569.25				

4. An actuary is reviewing the following claims data:
No. of closed claims

Total paid losses on closed claims (000's)

Acc.	Development Year Ult.						Acc. Year	Development Year					
Year	0	1	2	3	4			0	0	2	2	3	4
2012	250	35	70	395		400	2012		2,087	2,263		2	
2013	280	85	00			460	2013	1,509	2,641	2,948			
2014	330	95				500	2014	1,745	3,214	3,754			
2015	320					540	2015	3,094	4 3,244				
2016	360					580	2016	2,824					

(a) Calculate tables of percentage of claims closed and cumulative average losses.
Percentage of claims closed
Average paid losses per claim on closed claims (000 's)

Acc.	Development Year		Acc.	Development Year				
Year	$0 \quad 1$	$2 \quad 3 \quad 4$	Year	0	1	2	3	4
2012	62.583 .75	92.598 .75100	2012	2,892	6,230		7,144	
2013	60.8783 .70	86.9697 .83	2013	5,389	6,860		11,680	
2014	$66 \quad 79$	94	2014	5,288	8,137			
2015	59.2685 .19		2015	9,669	7,052			
2016	62.07		2016	7,844				

(b) Adjust the total loss table to use the current disposal rate.

The current disposal rate is given by the last number in each row in the percentage of claims closed table - that is

Acc.	Development Year	
Year	$0 \quad 1 \quad 2 \quad 34$	
Disposal rate 62.0785 .199497 .83	100	

We therefore adjust each entry in the total claims table by multiplying by the following factors:

Acc.	Development Year				
Year	0	1	2	3	4
2012	$\frac{62.07}{62.5}$	$\frac{85.19}{83.75}$	$\frac{94}{92.5}$	$\frac{97.83}{98.75}$	$\frac{100}{100}$
2013	$\frac{62.07}{60.87}$	$\frac{85.19}{83.70}$	$\frac{94}{86.96}$	97.83	
27.83					
2014	$\frac{62.07}{66}$	$\frac{85.19}{79}$	$\frac{94}{94}$		
2015	$\frac{62.07}{59.26}$	$\frac{85.19}{85.19}$			
2016	$\frac{62.07}{62.07}$				

The adjusted payments are:

Acc.	Development Year			
Year	0	1	2	3

(c) Use the chain ladder method to estimate claim development based on the adjusted numbers. Compare this to the chain ladder method on aggregate payments on closed claims.
For the adjusted payments, the loss-development factors are
$\frac{11521}{7139}=1.61381145819$
$\frac{9241}{8277}=1.11646731908$
$\frac{8052}{5487}=1.46746856206$
$\frac{4783}{2796}=1.71065808298$
These result in the following total cumulative loss payments:

Acc.	Development Year			
Year	$0 \quad 1$	2	23	4
2013				8991.22
2014			5508.88	9423.80
2015		3621.82	5314.91	9091.99
2016	4557.40	5088.19	7466.76	12773.08

For un-adjusted payments on closed claims, the development factors are
$\frac{11186}{7771}=1.58195446189$
$\frac{8965}{7942}=1.12880886427$
$\frac{8078}{5211}=1.55018230666$
$\frac{4783}{2822}=1.694897236$

These result in the following total cumulative loss payments

Acc.	Development Year			
Year	1	2	3	4
2013				8908.38
2014			5819.38	9863.26
2015		3661.86	5676.54	9621.16
2016	4467.44	5042.89	7817.39	13249.68

Using the average, the loss development factors on adjusted data are:
$1.95411639968,1.11736845646,1.4324260242,1.71065808298$
So the esimated claim development is

Acc.	Development Year			
Year	1	2	3	4
2013			8991	
2014		5377	9199	
2015		3625	5192	8882
2016	5518	6166	8833	15109

Using the unadjusted data, the loss development factors are:
$1.88176602337,1.12286345271,1.51496044863,1.694897236$ So the esimated claim development is

Acc.	Development Year			
Year	0	1	2	3
2013			8908	
2014		5687	9639	
2015		3643	5518	9353
2016	5314	5967	9040	15322

Standard Questions

5. An insurance company insures 10,000 homes. Each home makes a claim with probability 0.02. If a home makes a claim, the loss distribution of the claim is a mixture distribution: with probability 0.95, the loss amount follows an exponential distribution with mean $\$ 5,000$. With probability 0.05, the loss amount follows an exponential distribution with mean \$300,000. The insurance company sets its premium at 110% of expected claims. What policy limit should it set to ensure that the probability that aggregate claims exceed aggregate premiums is less than 0.001? [Note that changes to the policy limit will change the premium.]
For an exponential random variable X with mean θ, the expectation of the limited loss random variable $X \wedge u$ is given by $\mathbb{E}(X \wedge u)=\int_{0}^{u} e^{-\frac{x}{\theta}} d x=$ $\theta\left(1-e^{-\frac{u}{\theta}}\right)$. If the policy limit is u, then the expected claim per policy is

$$
0.02\left(0.95 \times 5000\left(1-e^{-\frac{u}{5000}}\right)+0.05 \times 30000\left(1-e^{-\frac{u}{30000}}\right)=125-95 e^{-\frac{u}{5000}}-30 e^{-\frac{u}{30000}}\right.
$$

The premium is therefore 110% of this, which is $137.5-104.5 e^{-\frac{u}{5000}}-$ $33 e^{-\frac{u}{30000}}$. The variance of the limited loss random variable (per loss) is
given by

$$
\begin{aligned}
\mathbb{E}\left((X \wedge u)^{2}\right)= & \int_{0}^{u} x^{2}\left(\frac{0.95}{5000} e^{-\frac{x}{5000}}+\frac{0.05}{30000} e^{-\frac{x}{30000}}\right) d x+\left(0.95 e^{-\frac{u}{5000}}+0.05 e^{-\frac{u}{30000}}\right) u^{2} \\
= & {\left[-x^{2}\left(0.95 e^{-\frac{x}{5000}}+0.05 e^{-\frac{x}{30000}}\right) d x\right]_{0}^{u}+2 \int_{0}^{u} x\left(0.95 e^{-\frac{x}{5000}}+0.05 e^{-\frac{x}{30000}}\right) d x } \\
& +\left(0.95 e^{-\frac{u}{5000}}+0.05 e^{-\frac{u}{30000}}\right) u^{2} \\
= & 2\left(\left[-x\left(4750 e^{-\frac{x}{5000}}+1500 e^{-\frac{x}{30000}}\right)\right]_{0}^{u}+\int_{0}^{u}\left(4750 e^{-\frac{x}{5000}}+1500 e^{-\frac{x}{30000}}\right) d x\right) \\
= & -2 u\left(4750 e^{-\frac{u}{5000}}+1500 e^{-\frac{u}{30000}}\right)+137500000-47500000 e^{-\frac{x}{5000}}-90000000 e^{-\frac{x}{30000}} \\
\operatorname{Var}(X \wedge u)= & 137500000-2 u\left(4750 e^{-\frac{u}{5000}}+1500 e^{-\frac{u}{30000}}\right)-47500000 e^{-\frac{x}{5000}}-90000000 e^{-\frac{x}{30000}} \\
& -\left(6250-4750 e^{-\frac{u}{5000}}-1500 e^{-\frac{u}{30000}}\right)^{2} \\
= & 98437500-9500 u e^{-\frac{u}{5000}}-3000 u e^{-\frac{u}{30000}}+11875000 e^{-\frac{u}{5000}}-71250000 e^{-\frac{u}{30000}} \\
& \left.-14250000 e^{-u\left(\frac{1}{5000}+\frac{1}{30000}\right.}\right)-22562500 e^{-\frac{2 u}{5000}}-2250000 e^{-\frac{2 u}{30000}}
\end{aligned}
$$

Now the variance per policy is

$$
\begin{aligned}
\operatorname{Var}(P)= & 0.02 \operatorname{Var}(X \wedge u)+0.02 \times 0.98(\mathbb{E}(X \wedge u))^{2} \\
= & 0.02 \mathbb{E}\left((X \wedge u)^{2}\right)-0.02^{2}(\mathbb{E}(X \wedge u))^{2} \\
= & 2734375-190 u e^{-\frac{u}{5000}}-60 u e^{-\frac{u}{30000}}-926250 e^{-\frac{u}{5000}}-1792500 e^{-\frac{u}{30000}} \\
& -5700 e^{-u\left(\frac{1}{5000}+\frac{1}{30000}\right)}-9025 e^{-\frac{2 u}{5000}}-900 e^{-\frac{2 u}{30000}}
\end{aligned}
$$

The variance of the average loss per policy is obtained by dividing this by 10000 . Using a normal approximation, the probability that aggregate losses exceed premiums is

$$
1-\Phi\left(\sqrt{10000} \frac{12.5-9.5 e^{-\frac{u}{5000}}-3 e^{-\frac{u}{30000}}}{\sqrt{\operatorname{Var}(P)}}\right)
$$

We want to solve

$$
\begin{aligned}
\Phi\left(\sqrt{10000} \frac{12.5-9.5 e^{-\frac{u}{5000}}-3 e^{-\frac{u}{30000}}}{\sqrt{\operatorname{Var}(P)}}\right) & =0.999 \\
\sqrt{10000} \frac{12.5-9.5 e^{-\frac{u}{5000}}-3 e^{-\frac{u}{30000}}}{\sqrt{\operatorname{Var}(P)}} & =3.090232 \\
\left(12.5-9.5 e^{-\frac{u}{5000}}-3 e^{-\frac{u}{30000}}\right)^{2} & =0.00009549536 \operatorname{Var}(P) \\
0.01009549536\left(125-95 e^{-\frac{u}{5000}}-30 e^{-\frac{u}{30000}}\right)^{2} & =0.00009549536 \times 0.02 \mathbb{E}\left((X \wedge u)^{2}\right)
\end{aligned}
$$

$105.7171\left(125-95 e^{-\frac{u}{5000}}-30 e^{-\frac{u}{30000}}\right)^{2}=-2 u\left(95 e^{-\frac{u}{5000}}+30 e^{-\frac{u}{30000}}\right)+2750000-950000 e^{-\frac{x}{5000}}-18000$

Solving this numerically gives $u=\$ 27,195$.

