ACSC/STAT 4703, Actuarial Models II Fall 2017

Toby Kenney
Homework Sheet 5
Model Solutions

Basic Questions

1. An insurance company sets the book pure premium for its tennants insurance at \$332. The expected process variance is 8,209 and the variance of hypothetical means is 21,455. If an individual has no claims over the last 6 years, calculate the credibility premium for this individual's next year's insurance using the Bühlmann model.

The credibility is

$$
Z=\frac{n}{n+\frac{\mathrm{EPV}}{\mathrm{VHM}}}=\frac{6}{6+\frac{8209}{21455}}=0.94005360051
$$

The premium is therefore $0 \times 0.94+332 \times 0.05994639949=\$ 19.90$.
2. An insurance company has the following data on a marine insurance policy for a shipping company.

Year	1	2	3	4	5
Exposure	455	490	476	532	565
Aggregate claims	$\$ 1,202,000$	$\$ 2,760,000$	$\$ 5,056,000$	$\$ 2,410,000$	$\$ 3,280,000$

The book premium is $\$ 9,800$ per unit of exposure. The variance of $h y$ pothetical means per unit of exposure is $1,435,000$. The expected process variance per unit of exposure is 42,348,300. Using a Bühlmann-Straub model, calculate the credibility premium for Year 6 if the company has 592 units of exposure.
The credibility of the company's past history is $\frac{2518}{2518+\frac{42348300}{1435000}}=0.98841574763$.
The company has aggregate claims of $\$ 14,708,000$ from 2518 units of exposure, so the average loss per unit of exposure is $\frac{14708000}{2518}=5841.14376$. The premium in year 6 is therefore $(5841.14376 \times 0.98841574763+9800 \times$ $0.01158425237) \times 592=\$ 3,485,106.46$.
3. An insurance company has the following previous data on aggregate claims:

Policyholder	Year 1	Year 2	Year 3	Year 4	Year 5	Mean	Variance
1	0.00	6466.54	0.00	0.00	1430.52	1579.41	7847453.93
2	568.29	743.32	600.67	537.46	619.98	613.94	6221.22
3	0.00	590.62	0.00	0.00	0.00	118.12	69766.40
4	260.98	0.00	0.00	530.55	612.01	280.71	82541.30

Calculate the Bühlmann credibility premium for each policyholder in Year 6.

The mean yearly claims are $\underline{1579.41+613.94+118.12+280.71}=648.045$. We estimate the expected process variance as $\frac{7847453.93+6221.22+69766.40+82541.30}{4}=$ 2001495.7125 and the variance of observed means as $\frac{(1579.41-648.045)^{2}+(613.94-648.045)^{2}+(118.12-648.045)^{2}+(28)}{3}$ 428119.80737. The variance of hypothetical means is then 428119.80737 $\frac{2001495.7125}{5}=27820.66487$.
The credibility of 5 years of experience is therefore $\frac{5}{5+\frac{200495.7125}{27820.66487}}=0.0649833630471$
The premiums are therefore:
Policyholder $1 \quad 0.0649833630471 \times 1579.41+0.9350166369529 \times 648.045=\$ 708.57$
Policyholder $2 \quad 0.0649833630471 \times 613.94+0.9350166369529 \times 648.045=\$ 645.83$
Policyholder $3 \quad 0.0649833630471 \times 118.12+0.9350166369529 \times 648.045=\$ 613.61$
Policyholder $4 \quad 0.0649833630471 \times 280.71+0.9350166369529 \times 648.045=\$ 624.17$
4. Over a three-year period, an insurance company observes the following numbers of claims:

No. of claims	0	1	2	3	4	5	6	7	8	9	10	12
Frequency	3401	3146	1787	956	444	174	54	29	4	2	2	1

Assuming the number of claims made by an individual in a year follows a Poisson distribution, calculate the credibility estimate for the expected claim frequency in the following year, of an individual who has made a total of 1 claim in the past 3 years.
The average number of claims made by an individual in a three-year period
is $\frac{3146 \times 1+1787 \times 2+956 \times 3+444 \times 4+174 \times 5+54 \times 6+29 \times 7+4 \times 8+2 \times 9+2 \times 10+1 \times 12}{3401+3146+1787+956+444+174+54+29+4+2+2+1}=1.2843$
If the number of claims follows a Poisson distribution, then this is also the variance of the number of claims in a three-year period (the expected process variance). The variance of observed means is then
$\frac{3401 \times(0-1.2843)^{2}+3146 \times(1-1.2843)^{2}+1787 \times(2-1.2843)^{2}+956 \times(3-1.2843)^{2}+444 \times(4-1.2843)^{2}+174 \times(5-1.2843)^{2}+54 \times(6-1.28}{3401+3146+1787+956+444+174+54+29+4+2}$
1.79865337536 This means that the variance of hypothetical means is $1.79865337536-1.2843=0.51435337536$, so the credibility of three years of experience is $\frac{1}{1+\frac{1.2843}{0.51435337536}}=0.285965813317$. The expected annual claim frequency for an individual who has made 1 claim in the past 3 years is

$$
\frac{1 \times 0.285965813317+1.2843 \times 0.714034186683}{3}=0.40099997309
$$

Standard Questions

5. Aggregate claims for a given individual policy are modelled as following an exponential distribution. The first 5 years of experience on this policy are:

Policyholder	Year 1	Year 2	Year 3	Year 4	Year 5	Mean	Variance
1	446	208	533	40	25	250.4	53748.3
2	1090	1896	1309	62	361	943.6	544664.3
3	856	74	455	192	521	419.6	93305.3
4	76	203	560	1170	124	426.6	208730.8

(a) Estimate the EPV and VHM.

For an exponential distribution with mean θ, the variance is θ^{2}. The expected process variance is therefore $\frac{250.4^{2}+943.6^{2}+419.6^{2}+426.6^{2}}{4}=327783.21$. The variance of observed means is $\frac{(250.4-510.05)^{2}+(943.6-510.05)^{2}+(419.6-510.05)^{2}+(426.6-510.05)^{2}}{3}=$ 90176.2766667. The variance of hypothetical means is therefore $90176.2766667-$ $\frac{327783.21}{5}=24619.6346667$.
(b) Calculate the credibility premium for policyholder 2 in the next year.

The credibility of 5 years of experience is $\frac{5}{5+\frac{327783.21}{24619.6346667}}=0.273016757585$. The credibility premium for policyholder 2 is therefore $0.273016757585 \times$ $943.6+0.726983242415 \times 510.05=\$ 628.42$.
6. Claim frequency in a year for an individual follows a Poisson with parameter Λt where Λ is the individual's risk factor and t is the individual's exposure in that year. An insurance company collects the following data:

	Year 1		Year 2		Year 3	
Policyholder	Exp	claims	Exp	claims	Exp	claims
1	432	2	403	2	448	3
2	214	4	270	3	302	6
3	303	0	323	1	317	1
4	515	3	487	2	502	4

In Year 5, policyholder 2 has 264 units of exposure. Calculate the credibility estimate for claim frequency for policyholder 2.

We summarise each policyholder's total exposure and claims:

Policyholder	Exp	claims	$\hat{\Lambda}$
1	1283	7	0.005455962588
2	786	13	0.016539440204
3	943	2	0.002120890774
4	1504	9	0.005984042553

Taking an equally weighted average of these gives
$\hat{\lambda}=\frac{0.005455962588+0.016539440204+0.002120890774+0.005984042553}{4}=0.00752508402975$
For the Poisson distribution, this is also the EPV, and the variance of the means is
$\operatorname{Var}(\hat{\Lambda})=\frac{(0.005456-0.007525)^{2}+(0.016539-0.007525)^{2}+(0.002121-0.007525)^{2}+(0.005984-0.007525)^{2}}{3}=0.0000390399981$

The variance due to process variance is
$\frac{0.00752508402975}{4}\left(\frac{1}{1283}+\frac{1}{786}+\frac{1}{943}+\frac{1}{1504}\right)=0.00000710561112969$
The variance of hypothetical means is therefore $0.0000390399981183-$ $0.00000710561112969=0.0000319343869886$. This means the credibility of n units of exposure is $\frac{n}{n+\frac{0.00752508409755}{0.000031334386886}}$. For policyholder 2, the credibility is therefore $Z=\frac{0.0786}{786+\frac{0.0752508402975}{0.0000319343869886}}=0.769349704521$.
The expected claim frequency is therefore $264 \times(0.769349704521 \times 0.016539440204+$ $0.230650295479 \times 0.00752508402975)=3.81751294027$.

Weighting each policyholder by experience

There were a total of 31 claims from 4516 units of exposure. The average of $\hat{\Lambda}$ is therefore $\frac{31}{4516}=0.006864481842$
This is the EPV per unit of exposure. We calculate $1283 \times(0.005455962588-$ $0.006864481842)^{2}+786 \times(0.016539440204-0.006864481842)^{2}+943 \times$ $(0.002120890774-0.006864481842)^{2}+1504 \times(0.005984042553-0.006864481842)^{2}=$ 0.0985036881817 . The variance due to EPV is $3 \times 0.006864481842=$ 0.020593445526 . Now we get $0.0985036881817-0.020593445526=0.0779102426557$ is an unbiassed estimate for $\sum_{i=1}^{4} m_{i}\left(\Lambda_{i}-\bar{\Lambda}\right)^{2}$ where Λ_{i} is the hypothetical mean for the i th policyholder. The variance of hypothetical means is therefore $\frac{0.0779102426557}{4516-\frac{1283^{2}+786^{2}+543^{2}+1504^{2}}{4516}}=0.0000234888955211$. The credibility of n units of exposure is therefore $\frac{n}{n+\frac{0.006864481842}{0.000023488895211}}$. For policyholder 2, the credibility is therefore $Z=\frac{.786}{786+\frac{.006844818184}{0.0000234888955211}}=0.728963217418$.
The expected claim frequency is therefore $264 \times(0.728963217418 \times 0.016539440204+$ $0.271036782582 \times 0.006864481842)=3.67413304315$.

