ACSC/STAT 4703, Actuarial Models II Fall 2018

Toby Kenney Homework Sheet 1 Due: Friday 28th September: 11:30 PM

Basic Questions

- 1. Aggregate payments have a compute distribution. The frequency distribution is negative binomial with r = 5 and $\beta = 1.3$. The severity distribution is a Weibull distribution with $\tau = 2.3$ and $\theta = 15000$. Use a Pareto approximation to aggregate payments to estimate the probability that aggregate payments are more than \$150,000.
- 2. Loss amounts follow a gamma distribution with $\alpha = 2$ and $\theta = 12,000$. The distribution of the number of losses is given in the following table:

Number of Losses	Probability
0	0.17
1	0.21
2	0.37
3	0.25

Assume all losses are independent and independent of the number of losses. The insurance company buys excess-of-loss reinsurance on the part of the loss above \$100,000. Calculate the expected payment for this excess-of-loss reinsurance.

- 3. An insurance company models loss frequency as binomial with n = 95, p = 0.12, and loss severity as Pareto with $\theta = 20,000$ and $\alpha = 1.5$. Calculate the expected aggregate payments if there is a policy limit of \$50,000 and a deductible of \$10,000 applied to each claim.
- 4. Claim frequency follows a negative binomial distribution with r = 3 and $\beta = 5.9$. Claim severity (in thousands) has the following distribution:

Severity	Probability
1	0.3
2	0.45
3	0.14
4	0.08
5 or more	0.03

Use the recursive method to calculate the exact probability that aggregate claims are at least 5.

5. Use an arithmetic distribution (h = 1) to approximate a Weibull distribution with $\tau = 3$ and $\theta = 20$.

(a) Using the method of rounding, calculate the mean of the arithmetic approximation.

(b) Using the method of local moment matching, matching 1 moment on each interval, estimate the probability that the value is larger than 14.5.

Standard Questions

6. The number of claims an insurance company receives follows a negative binomial distribution with r = 110 and $\beta = 17$. Claim severity follows a negative binomial distribution with r = 9 and $\beta = 0.8$. Calculate the probability that aggregate losses exceed \$15,000.

(a) Starting the recurrence 6 standard deviations below the mean [You need to calculate the recurrence up to $f_s(20,000)$.]

(b) Using a suitable convolution.