ACSC/STAT 4703, Actuarial Models II

Fall 2018
Toby Kenney
Homework Sheet 1
Model Solutions

Basic Questions

1. Aggregate payments have a compund distribution. The frequency distribution is negative binomial with $r=5$ and $\beta=1.3$. The severity distribution is a Weibull distribution with $\tau=2.3$ and $\theta=15000$. Use a Pareto approximation to aggregate payments to estimate the probability that aggregate payments are more than \$150,000.

The negative binomial distribution has mean $5 \times 1.3=6.5$ and variance $5 \times$ $1.3 \times 2.3=14.95$. The Weibull distribution has mean $15000 \times \Gamma\left(1+\frac{1}{2.3}\right)=$ 13288.72 and variance $15000^{2}\left(\Gamma\left(1+\frac{2}{2.3}\right)-\Gamma\left(1+\frac{1}{2.3}\right)^{2}\right)=37542739$. The mean aggregate payment is therefore $6.5 \times 13288.72=\$ 86,376.68$ and the variance is $6.5 \times 37542739+14.95 \times 13288.72^{2}=2,884,049,488$.
To approximate the distribution by a Pareto distribution, we get the parameters by solving:

$$
\begin{aligned}
\frac{\theta}{\alpha-1} & =86376.68 \\
\frac{\alpha \theta^{2}}{(\alpha-1)^{2}(\alpha-2)} & =2884049488 \\
\frac{\alpha-2}{\alpha} & =\frac{86376.68^{2}}{2884049488}=2.58696 \\
\frac{2}{\alpha} & =-1.58696 \\
\alpha & =-1.26027121036 \\
\theta & =86376.68 \times-2.26027121036=-195234.72305
\end{aligned}
$$

[Due to an error in the quesiton, this is not actually an acceptable Pareto distribution. However, we will proceed assuming that it can just be used in this way.]
The probability that the aggregate payments exceed $\$ 150,000$ is therefore $\left(\frac{-195234.72305}{150000-195234.72305}\right)^{-1.26027121036}=0.158350887147$.
2. Loss amounts follow a gamma distribution with $\alpha=2$ and $\theta=12,000$. The distribution of the number of losses is given in the following table:

Number of Losses	Probability
0	0.17
1	0.21
2	0.37
3	0.25

Assume all losses are independent and independent of the number of losses. The insurance company buys excess-of-loss reinsurance on the part of the loss above \$100,000. Calculate the expected payment for this excess-of-loss reinsurance.

If the number of losses is k, then the aggregate loss distribution is a gamma distribution with $\alpha=2 k$ and $\theta=12000$. The expected payment on this excess-of-loss insurance is therefore

$$
\begin{aligned}
& \int_{100000}^{\infty}(x-100000) \frac{x^{2 k-1} e^{-\frac{x}{12000}}}{12000^{2 k} \Gamma(2 k)} d x \\
= & \int_{100000}^{\infty} \frac{x^{2 k} e^{-\frac{x}{12000}}}{12000^{2 k} \Gamma(2 k)} d x-100000 \int_{100000}^{\infty} \frac{x^{2 k-1} e^{-\frac{x}{12000}}}{12000^{2 k} \Gamma(2 k)} d x \\
= & 24000 k \int_{100000}^{\infty} \frac{x^{2 k} e^{-\frac{x}{12000}}}{12000^{2 k+1} \Gamma(2 k+1)} d x-100000 \int_{100000}^{\infty} \frac{x^{2 k-1} e^{-\frac{x}{120000}}}{12000^{2 k} \Gamma(2 k)} d x
\end{aligned}
$$

The integrals in the final expression are the probability that a gamma distribution with $\theta=12000$ and shape parameters $\alpha=2 k+1$ and $\alpha=2 k$ respectively exceed 100000 . These can easily be computed in R using the pgamma function. For example, when $k=1$ we get

```
> pgamma(100000/12000,shape=2+1,lower.tail=FALSE)
[1] 0.01058961
> pgamma(100000/12000,shape=2,lower.tail=FALSE)
[1] 0.002243448
```

We get the following expected payments on the excess-of-loss reinsurance.

No. of claims	Expected Aggregate loss payment
0	0
1	$24000 \times 0.01058961-100000 \times 0.002243448=29.80582$
2	$48000 \times 0.082072946-100000 \times 0.033773395=562.1619$
3	$72000 \times 0.274376713-100000 \times 0.162572197=3497.904$

The total expected aggregate loss payment is therefore $0.21 \times 29.80582+$ $0.37 \times 562.1619+0.25 \times 3497.904=\$ 1,088.74$
3. An insurance company models loss frequency as binomial with $n=95, p=$ 0.12 , and loss severity as Pareto with $\theta=20,000$ and $\alpha=1.5$. Calculate the expected aggregate payments if there is a policy limit of $\$ 50,000$ and a deductible of $\$ 10,000$ applied to each claim.

With a policy limit of $\$ 50,000$ and a deductible of $\$ 10,000$, the expected payment for each loss is

$$
\begin{aligned}
\int_{10000}^{50000}\left(\frac{20000}{20000+x}\right)^{1.5} d x & =20000 \int_{1.5}^{3.5} u^{-1.5} d u \\
& =20000\left[-2 u^{-0.5}\right]_{1.5}^{3.5} \\
& =40000\left(\frac{1}{\sqrt{1.5}}-\frac{1}{\sqrt{3.5}}\right) \\
& =11278.9638842
\end{aligned}
$$

The expected number of losses is $95 \times 0.12=11.4$, so the expected aggregate payment is $11.4 \times 11278.9638842=\$ 128,580.19$.
4. Claim frequency follows a negative binomial distribution with $r=3$ and $\beta=5.9$. Claim severity (in thousands) has the following distribution:

Severity	Probability
1	0.3
2	0.45
3	0.14
4	0.08
5 or more	0.03

Use the recursive method to calculate the exact probability that aggregate claims are at least 5.
The recursive method uses the formula

$$
f_{S}(x)=\frac{\left(p_{1}-(a+b) p_{0}\right) f_{X}(x)+\sum_{i=1}^{x}\left(a+\frac{b i}{x}\right) f_{X}(i) f_{S}(x-i)}{1-a f_{X}(0)}
$$

Since claim frequency follows a negative binomial distribution, we have $a=\frac{\beta}{1+\beta}=\frac{5.9}{6.9}$ and $b=(r-1) \frac{\beta}{1+\beta}=\frac{11.8}{6.9}$. We also have $p_{1}-a p_{0}=0$, and the severity distribution is zero truncated, so the denominator is 1 . This allows us to simplify the recurrence to

$$
f_{S}(x)=\frac{5.9}{6.9} \sum_{i=1}^{x}\left(1+\frac{2 i}{x}\right) f_{X}(i) f_{S}(x-i)
$$

Since the severity distribution is zero-truncated, the aggregate loss is zero only if the number of claims is zero, which has probability $\frac{1}{6.9^{3}}=$ 0.003044056632 . The recurrence therefore gives

$$
\begin{aligned}
f_{S}(1)= & \frac{5.9}{6.9} \times 3 \times 0.3 \times 0.003044=0.00234260010376 \\
f_{S}(2) & =\frac{5.9}{6.9}(2 \times 0.3 \times 0.002343+3 \times 0.45 \times 0.003044)=0.00471575586104 \\
f_{S}(3) & =\frac{5.9}{6.9}\left(\frac{5}{3} \times 0.3 \times 0.004716+\frac{7}{3} \times 0.45 \times 0.002343+3 \times 0.14 \times 0.003044\right)=0.00521261735752 \\
f_{S}(4)= & \frac{5.9}{6.9}(1.5 \times 0.3 \times 0.005213+2 \times 0.45 \times 0.004716 \\
& \quad+2.5 \times 0.14 \times 0.002343+3 \times 0.08 \times 0.003044)=0.00696102521739
\end{aligned}
$$

The probability that the aggregate loss is at least 5 is therefore

$$
1-0.003044-0.002343-0.004716-0.005213-0.006961=0.977724
$$

5. Use an arithmetic distribution $(h=1)$ to approximate a Weibull distribution with $\tau=3$ and $\theta=20$.
(a) Using the method of rounding, calculate the mean of the arithmetic approximation.
For $n \geqslant 1$, the probability p_{n} for the arithmetic approximation is

$$
p_{n}=P(n-0.5<X<n+0.5)=e^{-\left(\frac{n-0.5}{20}\right)^{3}}-e^{-\left(\frac{n+0.5}{20}\right)^{3}}
$$

This gives us

$$
S(n)=e^{-\left(\frac{n-0.5}{20}\right)^{3}}
$$

. Numerically evaluating this sum, the mean of this distribution is therefore

$$
\sum_{n=1}^{\infty} e^{-\left(\frac{n-0.5}{20}\right)^{3}}=17.85959
$$

(b) Using the method of local moment matching, matching 1 moment on each interval, estimate the probability that the value is larger than 14.5.

Under the method of local moment matching, we choose $p_{2 n}$ and $p_{2 n+1}$ so that

$$
\begin{aligned}
P(2 n-0.5<X<2 n+1.5) & =p_{2 n}+p_{2 n+1} \\
\mathbb{E}(X \mid 2 n-0.5<X<2 n+1.5) & =\frac{2 n p_{2 n}+(2 n+1) p_{2 n+1}}{p_{2 n}+p_{2 n+1}}
\end{aligned}
$$

From the first equation, we have $p_{0}+\ldots+p_{13}=P(X<13.5)=1-$ $e^{-\left(\frac{13.5}{20}\right)^{3}}=0.264751598029$, so we just need to find p_{14}.

We have
$p_{14}+p_{15}=P(13.5<X<15.5)=e^{-\left(\frac{13.5}{20}\right)^{3}}-e^{-\left(\frac{15.5}{20}\right)^{3}}=0.107417476049$
and

$$
\begin{aligned}
14 p_{14}+15 p_{15} & =P(13.5<X<15.5) \mathbb{E}(X \mid 13.5<X<15.5) \\
& =13.5 e^{-\left(\frac{15.5}{20}\right)^{3}}+\int_{13.5}^{15.5} e^{-\left(\frac{x}{20}\right)^{3}} d x-15.5 e^{-\left(\frac{15.5}{20}\right)^{3}} \\
& =1.559665
\end{aligned}
$$

where the integral was calculated numerically.
This allows us to solve

$$
p_{14}=15 \times 0.107417476049-1.559665=0.05159714074
$$

Therefore

$$
P(X>14.5)=1-0.264751598029-0.05159714074=0.683651261231
$$

Standard Questions

6. The number of claims an insurance company receives follows a negative binomial distribution with $r=110$ and $\beta=17$. Claim severity follows a negative binomial distribution with $r=9$ and $\beta=0.8$. Calculate the probability that aggregate losses exceed \$15,000.
(a) Starting the recurrence 6 standard deviations below the mean [You need to calculate the recurrence up to $f_{s}(20,000)$.]
The mean aggregate loss is $110 \times 17 \times 9 \times 0.8=13464$ and the variance of the aggregate loss is $110 \times 17 \times 18 \times(9 \times 0.8)^{2}+110 \times 17 \times 9 \times 0.8 \times 1.8=$ 1769169.6. Six standard deviations below the mean is therefore $13464-$ $6 \sqrt{1769169.6}=5483.39$, so we will start our recurrence at $x=5483$. The recurrence is

$$
f_{S}(x)=\frac{\sum_{i=1}^{x} \frac{17}{18}\left(1+\frac{109 i}{x}\right)\binom{i+8}{i} \frac{1}{1.8^{9}}\left(\frac{0.8}{1.8}\right)^{i} f_{s}(x-i)}{1-\frac{17}{18 \times 1.8^{9}}}
$$

We start with $f_{S}(5482)=0$ and $f_{S}(5483)=1$ and use this recurrence to obtain all values of f_{S} up to $f_{S}(40000)$.

```
f}<-\operatorname{rep}(0,40000
f[5483]<-1
for(i in seq_len(40000-5483)){
fX<-choose ((1: i )+8,8)*(4/9)^(1: i )*(5/9)^9
    fS [5483+i}]=17/18/(1-17/18/1.8^9)*\operatorname{sum}((1+109*(1:\textrm{i})/\textrm{i})*\textrm{fS}[5483+\textrm{i}-(1:\textrm{i})]*\textrm{fX}
}
```

We then standardise f_{S} by dividing by its sum and evaluate the probability:
$\mathrm{fS}<-\mathrm{fS} / \operatorname{sum}(\mathrm{fS})$
$\operatorname{sum}(\mathrm{fS}[15001: 40000])$
This gives the probability 0.1257334 .
(b) Using a suitable convolution.

We have that a negative binomial distribution with parameters $r=110$, $\beta=17$ is a sum of 8 i.i.d. negative binomial distributions with parameters $r=13.75$ and $\beta=17$. We can therefore use the recurrence to get the distribution where the loss frequency distribution is negative binomial with $r=13.75$ and $\beta=17$. The P.G.F. of the negative binomial is $P(z)=(1+\beta-\beta z)^{-r}$ The probability that this distribution is zero is

$$
P\left(f_{x}(0)\right)=\left(1+17-17\left(\frac{1}{1.8^{9}}\right)\right)^{-13.75}=5.86817672559 \times 10^{-18}
$$

From this, we compute the recurrence

```
\[
f_{S}(x)=\frac{\sum_{i=1}^{x} \frac{17}{18}\left(1+\frac{12.75 i}{x}\right)\binom{i+8}{i} \frac{1}{1.8^{9}}\left(\frac{0.8}{1.8}\right)^{i} f_{s}(x-i)}{1-\frac{17}{18 \times 1.8^{9}}}
\]
\[
\mathrm{g}<-\operatorname{rep}(0,15001)
\]
\[
\mathrm{g}[1]=\left(1+17-17 / 1.8^{\wedge} 9\right)^{\wedge}(-13.75)
\]
\[
\text { for }(x \text { in } 2: 15001)\{
\]
\[
y<-\operatorname{seq}-\operatorname{len}(x-1)
\]
\[
\operatorname{temp}<-\operatorname{sum}\left((1+12.75 * y /(x-1)) * \operatorname{choose}(y+8,8) *(4 / 9)^{\wedge} y * g[x-y]\right)
\]
\[
\mathrm{g}[\mathrm{x}]<-\operatorname{temp} * 14 / 15 /\left(1-17 / 18 / 1.8^{\wedge} 9\right) / 1.8^{\wedge} 9
\]
\[
\}
\]
```

Having computed $f_{S}(x)$ for $x=0, \ldots, 15000$, we convolve this with itself 3 times to get the aggregate loss distribution

```
    ConvolveSelf<-function(n){
    l<-length(n)
    convolution<-vector("numeric", 2*l)
    for(i in seq_len(l)){
        convolution[i]<-sum(n[1:i]*n[i:1])
    }
    for(i in 1:(length(n))){
        convolution [2*l+1-i]<-sum(n[l+1-(1:i)]*n[l+1-(i:1)])
    }
    return(convolution)
}
```

```
g2<-ConvolveSelf(g)
g4<-ConvolveSelf(g2)
g8<-ConvolveSelf(g4)
1-sum(g8[1:15001])
```

This gives the probability value 0.1257334 .

