ACSC/STAT 4703, Actuarial Models II Fall 2018 Toby Kenney Homework Sheet 3 Model Solutions

Basic Questions

 A homeowner's house is valued at \$520,000, but is insured at \$270,000. The insurer requires 70% coverage for full insurance. The home sustains \$8,400 from flooding. The policy has a deductible of \$5,000, which decreases linearly to zero when the total cost of the loss is \$10,000. How much does the insurance company reimburse?

The proportion of coverage is $\frac{270000}{0.7 \times 520000} = 0.741758241758$. The deductible is $5000 \frac{10000-8400}{10000-5000} = \$1,600$. The insurance therefore pays (8400-1600) × 0.741758241758 = \$5,043.96.

2. An insurance company has three types of coverages for businesses with different expected loss ratios, and has the following data on recent claims:

Policy Type	Policy	Earned	Expected	Losses paid
	Y ear	Premiums	Loss Ratio	to date
Workers'	2015	\$4,000,000	0.76	\$1,900,000
compensation	2016	\$4,500,000	0.75	\$1,100,000
insurance	2017	\$5,200,000	0.77	\$700,000
	2015	\$800,000	0.74	\$580,000
<i>Fire insurance</i>	2016	\$920,000	0.74	\$675,000
	2017	\$880,000	0.75	\$630,000
Lighilita	2015	\$2,000,000	0.68	\$540,000
in auron ac	2016	\$2,400,000	0.67	\$520,000
insurunce	2017	\$2,600,000	0.66	\$190,000

Calculate the loss reserves at the end of 2017.

We use the expected loss ratios to calculate the expected total payments for each policy year:

Policy Type	Policy	Expected	Losses paid	Reserves
	Year	Payments	to date	needed
Workers'	2015	\$3,040,000	\$1,900,000	\$1,140,000
compensation	2016	3,375,000	\$1,100,000	\$2,275,000
insurance	2017	\$4,004,000	\$700,000	3,304,000
	2015	\$592,000	\$580,000	\$12,000
Fire insurance	2016	\$680,800	\$675,000	\$5,800
	2017	\$660,000	\$630,000	\$30,000
Liebility	2015	\$1,360,000	\$540,000	\$820,000
ingurance	2016	\$1,608,000	\$520,000	\$1,088,000
insurance	2017	\$1,716,000	\$190,000	\$1,526,000

The total reserves are therefore \$10,200,800.

3. The following table shows the paid losses on claims from one line of business of an insurance company over the past 6 years.

		Development year						
Accident year	Earned premiums	0	1	2	3	4	5	
2012	4,118	800	790	680	511	151	164	
2013	4,346	931	799	636	619	197		
2014	4,538	904	921	682	571			
2015	4,417	906	833	706				
2016	4,656	938	930					
2017	4,845	981						

Assume that all payments on claims arising from accidents in 2012 have now been settled. Estimate the future payments arising each year from open claims arising from accidents in each calendar year using

(a) The loss development triangle method

We first compute the cumulative loss development:

	Development year								
Accident year	0	1	2	3	4	5			
2012	800	1590	2270	2781	2932	3096			
2013	931	1730	2366	2985	3182				
2014	904	1825	2507	3078					
2015	906	1739	2445						
2016	938	1868							
2017	981								

If we now take cumulative sums over the columns of this to get total losses before each year, we get the following:

	Development year							
Accident year 2012–	0	1	2	3	4	5		
2012	800	1590	2270	2781	2932	3096		
2013	1731	3320	4636	5766	6114			
2014	2635	5145	7143	8844				
2015	3541	6884	9588					
2016	4479	8752						
2017	5460							

The loss development factors are

 $\frac{8752}{4479} = 1.95400759098$ $\frac{9588}{6884} = 1.39279488669$ $\frac{8844}{7143} = 1.2381352373$ $\frac{6114}{5766} = 1.06035379813$ $\frac{3096}{2932} = 1.05593451569$

This gives new cumulative losses

	Development year								
Accident year	0	1	2	3	4	5			
2012						3096			
2013					3182	3360			
2014				3078	3264	3446			
2015			2445	3027	3210	3389			
2016		1868	2602	3221	3416	3607			
2017	981	1917	2670	3306	3505	3701			

The average loss development factors are

$$\frac{1}{5} \left(\frac{1590}{800} + \frac{1730}{931} + \frac{1825}{904} + \frac{1739}{906} + \frac{1868}{938} \right) = 1.95508390893$$
$$\frac{1}{4} \left(\frac{2270}{1590} + \frac{2366}{1730} + \frac{2507}{1825} + \frac{2445}{1739} \right) = 1.39374552311$$
$$\frac{1}{3} \left(\frac{2781}{2270} + \frac{2985}{2366} + \frac{3078}{2507} \right) = 1.23816513007$$
$$\frac{1}{2} \left(\frac{2932}{2781} + \frac{3182}{2985} \right) = 1.06014683269$$
$$\frac{3096}{2932} = 1.05593451569$$

This gives new cumulative losses

	Development year								
Accident year	0	1	2	3	4	5			
2012						3096			
2013					3182	3360			
2014				3078	3263	3446			
2015			2445	3027	3209	3389			
2016		1868	2604	3224	3417	3609			
2017	981	1918	2673	3310	3509	3705			

(b) The Bornhuetter-Ferguson method with expected loss ratio 0.81.

Using the loss development factors from part (a), the proportion of total losses in each development year is

Development year	year Cumulative Proportion of total losses											
0	$\overline{1}$	954008×1 392795×1 2	$\frac{1}{38135 \times 1.06}$	0354×1.0559	$\frac{1}{935} = 0.2$	65051779	045					
1	1.	$\overline{1.392795 \times 1.2}$	$\frac{1}{38135 \times 1.06}$	0354×1.055	$\frac{1}{0.00} = 0.5$	17913188	257					
2		$\frac{1}{1.238135 \times 1.060354 \times 1.055935} = 0.721346840353$										
3		$\frac{1}{1.050354 \times 1.055355} = 0.893124941355$										
4		$\frac{1}{1.055035} = 0.947028423772$										
5				1.055	930		1					
Development year	C	umulative Propor	tion of to	tal losses	Propor	rtion of to	otal losses					
0	0.	265051779045			0.2650	51779045						
1	0.	517913188257			0.2528	61409212						
2	0.	721346840353			0.2034	33652096						
3	0.	893124941355			0.1717	78101002						
4	0.	947028423772			0.0539	03482417						
5	1				0.0529	71576228						
We get the following table:												
Accident Earn	ned	Expected total		Deve	lopment	year						
year premiu	\mathbf{ms}	payments	1	2	3	4	5					
2013 4,	346	3520.26					186.47					
2014 4,	538	3675.78				198.14	194.71					
2015 4,4	417	3577.77			614.58	192.85	189.52					
2016 4,	356	3771.36		767.22	647.84	203.29	199.77					
2017 4,8	345	3924.45	992.34	798.37	674.13	211.54	207.88					
For the average loss	dev	elopment factors,	we get									
Development year	C	umulative Propor	tion of to	tal losses	Propor	rtion of to	otal losses					
0	0.	264770464948			0.2647	70464948						
1	0.	51764847558			0.2528	78010632						
2	0.	721470245385			0.2038	21769805						
3	0.	893299300217		0.171829054832								
4	0.	947028423772			0.0537	29123555						
5	1				0.0529	71576228						

Accident	Earned	Expected total	Development year					
year	premiums	payments	1	2	3	4	5	
2013	4,346	3520.26					186.47	
2014	4,538	3675.78				197.50	194.71	
2015	4,417	3577.77			614.76	192.23	189.52	
2016	$4,\!656$	3771.36		768.69	648.03	202.63	199.77	
2017	$4,\!845$	3924.45	992.41	799.89	674.33	210.86	207.88	

4. An actuary is reviewing the following claims data:

No. of closed claims	Total paid losses on closed
	$claims \ (000's)$

Acc.	L	Develo	pmen	nt Year	n	Ult.	Acc.		Deve	lopmen	t Year	
Year	0	1	2	3	4		Year	0	1	2	3	4
2013	396	644	804	824	877	1014	2013	5,014	8,472	10,946	12,188	13,660
2014	461	806	1003	1071		1163	2014	5,605	11,374	15,878	17,628	
2015	625	1022	1167			1486	2015	8,834	13,459	20,213		
2016	589	1007				1592	2016	8,938	14,971			
2017	703					1758	2017	9,250				

 $(a) \ Calculate \ tables \ of \ percentage \ of \ claims \ closed \ and \ cumulative \ average \ losses.$

Percentage of claims closed

Acc.		Devel	t Year		Ult.	
Year	0	1	2	3	4	
2013	39.1	63.5	79.3	81.3	86.5	
2014	39.6	69.3	86.2	92.1		
2015	42.1	68.8	78.5			
2016	37.0	63.3				
2017	40.0					

Cumulative Average Losses:

Acc.		Dev		Ult.		
Year	0	1	2	3	4	
2013	\$12,662	\$13,155	\$13,614	\$14,791	\$15,576	\$17,105
2014	\$12,158	\$14,112	\$15,831	\$16,459	$$15,\!641$	\$18,208
2015	\$14,134	\$13,169	\$17,320	\$16,737	\$16,443	\$15,709
2016	$$15,\!175$	\$14,867	$$15,\!639$	\$16,558	\$16,851	\$18,690
2017	$$13,\!158$	\$14,864	\$18,228	$$16,\!433$	\$16,748	\$18,780

(b) Adjust the total loss table to use the current disposal rate.

The current disposal rates are

Development Year	Disposal rate
0	$\frac{703}{1758} = 0.399886234357$
1	$\frac{1007}{1592} = 0.632537688442$
2	$\frac{1167}{1486} = 0.78532974428$
3	$\frac{1071}{1163} = 0.920894239037$
4	$\frac{1877}{1014} = 0.864891518738$

The adjusted losses (in thousands) are therefore

Acc.	Development Year							
Year	0	1	2	3	4			
2013	5,134	8,438	10,842	13,812	$13,\!660$			
2014	$5,\!654$	10,381	$14,\!459$	$17,\!628$				
2015	8,399	$12,\!378$	20,213					
2016	9,661	$14,\!971$						
2017	9,250							

(c) Use the chain ladder method to estimate claim development based on the adjusted numbers. Compare this to the chain ladder method on aggregate payments on closed claims.

The loss development factors are

Development year	Loss development
0/1	1.6003846
1/2	1.4588797
2/3	1.2426776
3/4	0.9890033

This results in the following estimated cumulative payments

Acc.		Development Year						
Year	0	1	2	3	4			
2014					17434			
2015				25118	24842			
2016			21841	27141	26843			
2017		14804	21597	26838	26542			

Using the aggregate losses, the loss development factors are

	Development year	Loss development
_	0/1	1.700398
	1/2	1.412310
	2/3	1.111542
	3/4	1.120775

	This	results	in	the	foll	owing	estimated	cumul	ative	pa	vment	;s
--	------	---------	----	-----	------	-------	-----------	-------	-------	----	-------	----

Acc.	Development Year						
Year	0	1	2	3	4		
2014					19757		
2015				22468	25181		
2016			21144	23502	26341		
2017		15729	22214	24692	27674		

Standard Questions

5. The number of claims on an insurance policy follows a Poisson distribution with mean 40. For each claim, there is the following distribution of years to settlement and final claim amount:

Years	Probability	Final Claim amount				
$to \ settlement$		Mean	Standard Deviation			
0	0.2	800	300			
1	0.3	800	300			
2	0.2	1,000	350			
3	0.15	1,300	500			
4	0.1	1,700	1,100			
5	0.05	2,800	2,300			

 $(a) \ Calculate \ the \ expected \ loss \ development \ ratio.$

Thε	e expected	loss	payments	in	each	year	are	given	by
-----	------------	------	----------	----	------	------	----------------------	-------	----

Year	Expected loss payment
0	$40 \times 0.2 \times 800 = 6400$
1	$40 \times 0.3 \times 800 = 9600$
2	$40 \times 0.2 \times 1000 = 8000$
3	$40 \times 0.15 \times 1300 = 7800$
4	$40 \times 0.1 \times 1700 = 6800$
5	$40 \times 0.05 \times 2800 = 5600$

The expected loss development factors are therefore

Year	Loss Development Factor
0/1	$\frac{16000}{6400} = 2.5$
1/2	$\frac{24000}{16000} = 1.5$
2/3	$\frac{31800}{24000} = 1.325$
3/4	$\frac{38600}{31800} = 1.21383647799$
4/5	$\frac{\frac{44200}{38600}}{38600} = 1.14507772021$

(b) For policies sold 4 years ago, what is the probability that the losses paid out in development year 5 are more than twice the expected lossed using the loss development ratio? You may use a normal approximation for the aggregate losses in a given year.

If the losses paid out in Years 0–4 are X_0 , X_1 , X_2 , X_3 and X_4 , and the losses paid out in Year 5 are X_5 , then using the loss-development ratio, the expected losses are $0.14507772021(X_0 + X_1 + X_2 + X_3 + X_4)$, so we want to find the probability that $X_5 > 0.29015544042(X_0 + X_1 + X_2 + X_3 + X_4)$.

We compute the variance of the aggregate losses in each year:

Year	Variance of loss payment
0	$40 \times 0.2 \times \left(800^2 + 300^2\right) = 5840000$
1	$40 \times 0.3 \times (800^2 + 300^2) = 8760000$
2	$40 \times 0.2 \times (1000^2 + 350^2) = 8980000$
3	$40 \times 0.15 \times (1300^2 + 500^2) = 11640000$
4	$40 \times 0.1 \times (1700^2 + 1100^2) = 16400000$
5	$40 \times 0.05 \times (2800^2 + 2300^2) = 26260000$

Using the normal approximation, this means that $X_0 + X_1 + X_2 + X_3 + X_4 \sim N(38600, 51620000)$, while $X_5 \sim N(5600, 26260000)$. Therefore $X_5 - 0.29015544042(X_0 + X_1 + X_2 + X_3 + X_4) \sim N(5600 - 0.29015544042 \times 38600, 26260000 + 0.29015544042 \times 51620000) = N(-5600, 41237823.8345)$. The probability that $X_5 > 0.29015544042(X_0 + X_1 + X_2 + X_3 + X_4)$ is therefore $1 - \Phi\left(\frac{5600}{\sqrt{41237823.8345}}\right) = 0.1915912$.