ACSC/STAT 4703, Actuarial Models II Fall 2020

Toby Kenney Homework Sheet 4 Due: Friday 13th March: 13:30 PM

Basic Questions

1. An insurance company sells insurance. It estimates that the standard deviation of the aggregate annual claim is \$4,521 and the mean is \$1,020.

(a) How many years history are needed for an individual or group to be assigned full credibility? (Use r = 0.05, p = 0.90.)

The standard premium for this policy is \$1,020. A company has claimed a total of \$8,072 in the last 23 years.

(b) What is the Credibility premium for this company, using limited fluctuation credibility?

2. A home insurance company classifies houses as high, medium or low risk. Annual claims from high risk houses follow a Gamma distribution with $\alpha = 4$ and $\theta = 5000$. Annual claims from medium risk houses follow a Gamma distribution with $\alpha = 8$ and $\theta = 1400$. Annual claims from low risk houses follow a Gamma with $\alpha = 14$ and $\theta = 600$. 15% of houses are high risk, 65% are medium risk and 20% are low risk.

(a) Calculate the expectation and variance of the aggregate annual claims from a randomly chosen home.

(b) Given that a homeowner's annual claims over the past 4 years are \$4,000, \$250 and \$1,100, what are the expectation and variance of the homeowner's claims next year?

Standard Questions

3. For a certain insurance policy, the book premium is based on average claim frequency of 4.9 claims per year, and average claim severity of \$4,200. The standard for full credibility is 50 policy years for claim frequency and 230 claims for severity. The insurance company wants to change the standard for full credibility to a single standard (in terms of policy years) for aggregate claims. A particular group has 100 claims for a total of \$282,000, in 27 policy years of history. The insurance company wants the new standard to give the same premium for this group. What should the new standard be?

- 4. Aggregate claims for an individual are believed to follow a gamma distribution with $\alpha = 0.8$ and Θ varying between individuals. For a randomly chosen individual, Θ follows an inverse gamma distribution with $\alpha = 3$ and $\theta = 2000$. The insurance company uses limited fluctuation credibility with r = 0.05 and p = 0.95 to determine an individual's premium. If an individual has 6 years of past history, for what value of total claims during these 6 years would the limited fluctuation credibility premium equal the fair premium (using the Bayesian method)?
- 5. An insurance company has 4 years of past history on a marine insurance policy, denoted X_1 , X_2 , X_3 , X_4 . It uses a formula $\hat{X}_5 = \alpha_0 + \alpha_1 X_1 + \alpha_2 X_2 + \alpha_3 X_3 + \alpha_4 X_4$ to calculate the credibility premium in the fifth year. It has the following information on the policy:
 - In Year 1, the expected aggregate claim was \$32,000.
 - Expected aggregate claims increase by 4% per year.
 - The coefficient of variation of the aggregate claims is 0.8 in every year.
 - The correlation (recall $\operatorname{Corr}(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}$) between aggregate claims in years i and j is $e^{-\frac{|i-j|}{2}}$ for all $i \neq j$.

Find a set of equations which can determine the values of α_0 , α_1 , α_2 , α_3 and α_4 . [You do not need to solve these equations.]