
R code for Actuarial Science courses

Toby Kenney

October 2, 2018

This document describes a lot of R functions and tricks that are useful for
the ACSC/STAT 4703 and ACSC/STAT 4720 courses that I teach.

Distribution Functions

pgamma(x,shape,rate,scale,lower.tail)

This computes the distribution function of a gamma distribution. x is the
value at which we want to calculate the distribution function, shape is the
shape parameter α, scale is the scale parameter θ. lower.tail is set to TRUE

(the default) for calculating the distribution function, while setting it to FALSE

calculates the survival function. Note: calculating the survival function as
1-pgamma(x,shape=alpha,scale=theta) can be numerically unstable if x is
large. The rate parameter should not be set — it is used for an alternative
parametrisation from the one taught in these courses.

Example: Compute P (X > 1000) for X ∼ Gamma(3, 100).

pgamma(1000 , shape =3, s c a l e =100 , lower . t a i l=FALSE)

pnorm(x,mean,sd,lower.tail)

This computes the distribution function of a normal distribution — the Phi
function. The default values for mean and sd are 0 and 1 respectively, so without
setting those values, we compute the Φ function. x is the value at which we
want to calculate the distribution function, mean is the mean µ of the normal
distribution, sd is the standard deviation (not the variance) σ. lower.tail is
set to TRUE (the default) for calculating the distribution function, while setting
it to FALSE calculates the survival function. Note: calculating the survival
function as 1-pnorm(x) can be numerically unstable if x is large.

Example: Compute Φ(23.4)− Φ(22.85)

pnorm (2 2 . 8 5 , lower . t a i l=FALSE)−pnorm (2 3 . 4 , lower . t a i l=FALSE)

Note that we have calculated the survival function (and therefore reversed
the order of the values). This is because for these large values, the values of the
distribution function will be rounded to 1 to the limit of the machine accuracy,
so the difference would be zero.

1

Vector Operations

Arithmetic operations in R and many functions by default operate pointwise on
vectors. For example

c (2 , 4 , 8)ˆ c (4 , 3 , 2)

will perform the exponentiation elementwise producing the vector

c (2ˆ4 ,4ˆ3 ,8ˆ2)

This is faster than using a loop. You can generate a vector of consecutive
values using start:end. If you want to produce a vector of n consecutive values
starting at 1, you should instead use seq len(n), because this will correctly
produce an empty vector if n=0, whereas 1:n will produce a backwards vector
c(1,0).

As an example, we can compute the first l terms of a convolution of vectors
f and g of length l (for the last l-1 terms, we need to use a different formula

f o r (i in s e q l e n (l)) {
convo lut ion [i]< s u m (f [1 : i] g [i : 1])

}

This is much faster than the loop

f o r (i in s e q l e n (l)) {
convo lut ion [i]<−0
f o r (j in s e q l e n (i)){

convo lut ion [i]< c o n v o l u t i o n [i]+(f [j] g [i+1− j])
}

}

Example: Computing empirical distribution functions:

e m p i r i c a l d i s t r i b u t i o n<−f unc t i on (x , data){
data i s the data from which to c a l c u l a t e the func t i on
x i s the value at which to compute the d i s t r i b u t i o n func t i on
This works po intwi se i f x i s a vec to r
comparisons<−rep (1 , l ength (x))%∗%t (data)<=x%∗%rep (1 , l ength (data))
n l e s s<−rowSums(comparisons)
re turn (n l e s s / l ength (data))

}

This function works by constructing a matrix of comparisons. The %*% op-
erator is matrix multiplication. When we multiply a column vector by a row
vector, the result is a matrix. In this case rep(1,length(x))%*%t(data) pro-
duces a matrix whose [i,j] entry is data[j] and x%*%rep(1,length(data))

produces a matrix whose [i,j] entry is x[i]. The matrix comparisons there-
fore produces a logical matrix whose [i,j] entry is data[j]<=x[i]. By taking
the rowSums of this matrix, we count the number of data points smaller than
the entries of x.

2

