ACSC/STAT 4720, Life Contingencies II
 Fall 2017
 Toby Kenney
 Homework Sheet 1
 Due: Friday 29th September: 12:30 PM

Basic Questions

1. An CCRC is developing a model for its care costs. The community has four levels of care: Independent Living Unit, Assisted Living Unit, Skilled Nursing Facility, and Memory Care Unit. The transition diagram is shown below:

Which of the following sequences of transitions are possible? (Indicate which parts of the transition sequence are not possible if the sequence is not possible.)
(i) ILU—SNF (short-term)—ALU—Dead
(ii) ILU—ALU—SNF (long-term)—ILU
(iii) ILU—ALU—MCU—Dead
(iv) ILU—SNF (long-term)—MCU-ALU
(v) ILU—MCU—ALU—Dead
2. Consider a permanent disability model with transition intensities

$$
\begin{aligned}
& \mu_{x}^{01}=0.004+0.000001 x \\
& \mu_{x}^{02}=0.001+0.000005 x \\
& \mu_{x}^{12}=0.002+0.000003 x
\end{aligned}
$$

where State 0 is healthy, State 1 is permanently disabled and State 2 is dead.
(a) Calculate the probability that a healthy individual aged 22 is still healthy at age 41 .
(b) Calculate the probability that a healthy individual aged 22 is dead by age 38 .
3. Under a disability income model with transition intensities

$$
\begin{aligned}
& \mu_{x}^{01}=0.001 \\
& \mu_{x}^{10}=0.002 \\
& \mu_{x}^{02}=0.003 \\
& \mu_{x}^{12}=0.005
\end{aligned}
$$

calculate the probability that a healthy individual dies within the next 4 years. [State 0 is healthy, State 1 is sick and State 2 is dead.]
4. Under a critical illness model with transition intensities

$$
\begin{aligned}
& \mu_{x}^{01}=0.001 \\
& \mu_{x}^{02}=0.002 \\
& \mu_{x}^{12}=0.12
\end{aligned}
$$

calculate the premium for a 10-year policy with premiums payable continuously while the life is in the healthy state, which pays a death benefit of $\$ 130,000$ upon entry into state 2 , and a benefit of $\$ 80,000$ upon entry into state 1 , sold to a life in the healthy state (state 0). The interest rate is $\delta=0.06$ [State 0 is healthy, State 1 is sick and State 2 is dead.]
5. An employer offers a survivor benefit insurance policy. The possible exits from this policy are retirement, surrender, and death. The transition intensities are

$$
\begin{aligned}
& \mu_{x}^{01}=0.002+0.000003 x \\
& \mu_{x}^{03}=0.001+0.000004 x \\
& \mu_{x}^{02}= \begin{cases}0 & \text { if } x<60 \\
0.2(x-60) & \text { if } x \geqslant 60\end{cases}
\end{aligned}
$$

Calculate the probability that an individual aged 34 withdraws from the policy before age 64 . [State 0 is healthy, State 1 is surrender, State 2 is retired and State 3 is dead.]

Standard Questions

6. An insurance company is developing a new model for transition intensities in a disability income model. Under these transition intensities it calculates

$$
\begin{aligned}
\bar{a}_{27}^{00} & =18.17 & \bar{a}_{37}^{00} & =17.83 \\
\bar{a}_{27}^{01} & =0.84 & \bar{a}_{37}^{01} & =0.73 \\
{ }_{10} p_{27}^{00} & =0.919 & { }_{10} p_{27}^{01} & =0.026
\end{aligned}
$$

Calculate the premium for a 10-year policy for a life aged 27 , with continuous premiums payable while in the healthy state, which pays a continuous benefit while in the sick state, at a rate of $\$ 80,000$ per year, and pays a death benefit of $\$ 900,000$ immediately upon death. [Hint: to calculate A_{x}^{02}, consider how to extend the equation $\bar{a}_{x}=\frac{1-\bar{A}_{x}}{\delta}$ to the multiple state case by combining states 0 and 1.]

