ACSC/STAT 4720, Life Contingencies II
 Fall 2017
 Toby Kenney
 Homework Sheet 1
 Model Solutions

Basic Questions

1. An $C C R C$ is developing a model for its care costs. The community has four levels of care: Independent Living Unit, Assisted Living Unit, Skilled Nursing Facility, and Memory Care Unit. The transition diagram is shown below:

Which of the following sequences of transitions are possible? (Indicate which parts of the transition sequence are not possible if the sequence is not possible.)
(i) ILU—SNF (short-term) - ALU—Dead

Possible.
(ii) $I L U-A L U-S N F$ (long-term) $-I L U$

Impossible - the transition from SNF (long-term) to ILU is not permitted.
(iii) $I L U — A L U — M C U — D e a d$

Possible.
(iv) ILU—SNF (long-term) $-M C U-A L U$

Impossible - the transition from MCU to ALU is not permitted.
(v) $I L U — M C U — A L U — D e a d$

Impossible - the transition from MCU to ALU is not permitted.
2. Consider a permanent disability model with transition intensities

$$
\begin{aligned}
& \mu_{x}^{01}=0.004+0.000001 x \\
& \mu_{x}^{02}=0.001+0.000005 x \\
& \mu_{x}^{12}=0.002+0.000003 x
\end{aligned}
$$

where State 0 is healthy, State 1 is permanently disabled and State 2 is dead.
(a) Calculate the probability that a healthy individual aged 22 is still healthy at age 41.

The individual must stay healthy for the intervening time. The probability of this is

$$
\begin{aligned}
e^{-\int_{22}^{41}\left(\mu_{x}^{01}+m u_{x}^{02}\right) d x} & =e^{-\int_{22}^{41}(0.005+0.000006 x) d x} \\
& =e^{-\left[0.005 x+0.000003 x^{2}\right]_{22}^{41}} \\
& =e^{-\left(0.005(41-22)+0.000003\left(41^{2}-22^{2}\right)\right)} \\
& =0.9061132
\end{aligned}
$$

(b) Calculate the probability that a healthy individual aged 22 is dead by age 38.

There are two routes by which the individual can become dead - the probability that they die directly from the healthy state is

$$
\begin{aligned}
\int_{0}^{16}{ }_{t} p_{22+t}^{\overline{00}} \mu_{22+t}^{02} d t & =\int_{0}^{16} e^{-\left(0.005 t+0.000003\left((22+t)^{2}-22^{2}\right)\right)}(0.001+0.000005(22+t)) d t \\
& =\int_{0}^{16} e^{-\left(0.005132 t+0.000003 t^{2}\right)}(0.00111+0.000005 t) d t \\
& =\int_{0}^{16} e^{-0.000003\left(t^{2}+\frac{5132}{3} t\right)}(0.001+0.000005(22+t)) d t \\
& =\int_{0}^{16} e^{-0.000003\left(t+\frac{2566}{3}\right)^{2}+0.000003\left(\frac{2566}{3}\right)^{2}}(0.00111+0.000005 t) d t \\
& =0.000005 e^{0.000003\left(\frac{2566}{3}\right)^{2}} \int_{0}^{16} e^{-0.000003\left(t+\frac{2566}{3}\right)^{2}}\left(t+\frac{2566}{3}-\frac{1900}{3}\right) d t \\
& =0.000005 e^{0.000003\left(\frac{2566}{3}\right)^{2}}\left[-\frac{e^{-0.000003\left(t+\frac{2566}{3}\right)^{2}}}{0.000006}-\frac{1900}{3} \sqrt{\frac{\pi}{0.000003}} \Phi\left(\sqrt{0.000006}\left(t+\frac{2566}{3}\right)\right)\right]_{0}^{16} \\
& =0.01765192
\end{aligned}
$$

The probability that the life first becomes disabled, then dies is

$$
\begin{aligned}
& \int_{0}^{16} \int_{t}^{16}{ }_{t} p_{22+t}^{\overline{00}} \mu_{22+t s-t}^{01} p_{22+t}^{\overline{11}} \mu_{22+s}^{12} d s d t \\
= & \int_{0}^{16} \int_{t}^{16} e^{-\left(0.005 t+0.000003\left((22+t)^{2}-22^{2}\right)\right)}(0.004+0.000001(22+t)) e^{-\left(0.002(s-t)+0.000003\left((22+s)^{2}-(22+t)^{2}\right)\right)}(0.002+0.000003 \\
= & \int_{0}^{16} \int_{t}^{16} e^{-\left(0.003 t+0.002132 s+0.000003 s^{2}\right)}(0.004022+0.000001 t)(0.002+0.000003(22+s)) d s d t \\
= & \int_{0}^{16}(0.002+0.000003(22+s)) e^{-\left(0.002132 s+0.000003 s^{2}\right)} \int_{0}^{s} e^{-0.003 t}(0.004022+0.000001 t) d t d s \\
= & \int_{0}^{16}(0.002066+0.000003 s) e^{-\left(0.002132 s+0.000003 s^{2}\right)}\left(\frac{0.004022}{0.003}\left(1-e^{-0.003 s}\right)+\frac{0.000001}{0.003}\left(\frac{1-e^{-0.003 s}}{0.003}-s e^{-0.003 s}\right)\right) d s \\
= & \left.\int_{0}^{16}(0.002066+0.000003 s) e^{-\left(0.002132 s+0.000003 s^{2}\right.}\right)\left(\frac{4.022}{3}\left(1-e^{-0.003 s}\right)+\frac{1-e^{-0.003 s}}{9}-\frac{s e^{-0.003 s}}{3000}\right) d s \\
= & \int_{0}^{16}(0.002066+0.000003 s) e^{-\left(0.002132 s+0.000003 s^{2}\right)}\left(\frac{13.066}{9}-e^{-0.003 s}\left(\frac{13.066}{9}+\frac{s}{3000}\right)\right) d s \\
= & 10^{-9} \int_{0}^{16} 4355.333(688.6667+s) e^{-0.000003\left(s^{2}+710.667 s\right)}-\left(2999373+5044 s+s^{2}\right) e^{-0.000003\left(s^{2}+1710.667 s\right)} d s \\
= & 4.355 \times 10^{-6} e^{0.3787853}\left(\frac{e^{-0.3787853}-e^{-0.4136653}}{0.000006}-21.6667 \sqrt{\frac{\pi}{0.0000003}}(\Phi(0.9095772)-\Phi(0.8703854))\right) \\
= & 0.02448231
\end{aligned}
$$

The total probability of dying within 16 years is therefore $0.01765192+0.02448231=0.04213423$
3. Under a disability income model with transition intensities

$$
\begin{aligned}
& \mu_{x}^{01}=0.001 \\
& \mu_{x}^{10}=0.002 \\
& \mu_{x}^{02}=0.003 \\
& \mu_{x}^{12}=0.005
\end{aligned}
$$

calculate the probability that a healthy individual dies within the next 4 years. [State 0 is healthy, State 1 is sick and State 2 is dead.]
The probability that a healthy individual dies without ever becoming disabled is

$$
\begin{aligned}
\int_{0}^{4}{ }_{t} p_{x}^{\overline{00}} \mu_{x+t}^{02} d t & =\int_{0}^{4} 0.003 e^{-0.004 t} d t \\
& =\frac{0.003}{0.004}\left(1-e^{-0.016}\right) \\
& =0.01190451
\end{aligned}
$$

The probability that the individual becomes disabled then dies without recovering is

$$
\begin{aligned}
\int_{0}^{4} \int_{t}^{4}{ }_{t} p_{x}^{\overline{00}} \mu_{x+t s-t}^{01} p_{x+t}^{\overline{11}} \mu_{x+s}^{12} d s d t & =\int_{0}^{4} \int_{t}^{4} e^{-0.004 t} e^{-0.007(s-t)} 0.001 \times 0.005 d s d t \\
& =5 \times 10^{-6} \int_{0}^{4} \int_{t}^{4} e^{0.003 t} e^{-0.007 s} d s d t \\
& =5 \times 10^{-6} \int_{0}^{4} e^{-0.007 s} \int_{0}^{s} e^{0.003 t} d t d s \\
& =5 \times 10^{-6} \int_{0}^{4} e^{-0.007 s} \frac{e^{0.003 s}-1}{0.003} d s \\
& =\frac{0.005}{3} \int_{0}^{4} e^{-0.004 s}-e^{-0.007 s} d s \\
& =\frac{0.005}{3}\left(\frac{1-e^{-0.016}}{0.004}-\frac{1-e^{-0.028}}{0.007}\right) \\
& =0.00000941826
\end{aligned}
$$

The probability that the individual becomes disabled then recovers once before dying is

$$
\begin{aligned}
& \int_{0}^{4} \int_{t}^{4} \int_{s}^{4}{ }_{t} p_{x}^{\overline{00}} \mu_{x+t s-t}^{01} p_{x+t}^{\overline{11}} \mu_{x+s}^{10} r-s p_{x+s}^{\overline{00}} \mu_{x+r}^{02} d r d s d t \\
= & \int_{0}^{4} \int_{t}^{4} \int_{s}^{4} e^{-0.004 t} e^{-0.007(s-t)} e^{-0.004(r-s)} 0.001 \times 0.002 \times 0.003 d s d t \\
= & 6 \times 10^{-9} \int_{0}^{4} \int_{t}^{4} \int_{s}^{4} e^{0.003 t} e^{-0.003 s} e^{-0.004 r} d r d s d t \\
= & 6 \times 10^{-9} \int_{0}^{4} \int_{0}^{r} \int_{0}^{s} e^{0.003 t} e^{-0.003 s} e^{-0.004 r} d t d s d r \\
= & 6 \times 10^{-9} \int_{0}^{4} e^{-0.004 r} \int_{0}^{r} e^{-0.003 s} \int_{0}^{s} e^{0.003 t} d t d s d r \\
= & 2 \times 10^{-6} \int_{0}^{4} e^{-0.004 r} \int_{0}^{r} e^{-0.003 s}\left(e^{0.003 s}-1\right) d s d r \\
= & 2 \times 10^{-6} \int_{0}^{4} e^{-0.004 r} \int_{0}^{r}\left(1-e^{-0.003 s}\right) d s d r \\
= & 2 \times 10^{-6} \int_{0}^{4} e^{-0.004 r}\left(r-\frac{1-e^{-0.003 r}}{0.003}\right) d r \\
= & 2 \times 10^{-6}\left(\left[-\frac{r e^{-0.004 r}}{0.004}\right]_{0}^{4}+\int_{0}^{4} \frac{e^{-0.004 r}}{0.004} d r-\int_{0}^{4} \frac{e^{-0.004 r}}{0.003} d r+\int_{0}^{4} \frac{e^{-0.007 r}}{0.003} d r\right) \\
= & 2\left(\frac{1-e^{-0.028}}{21}-\frac{1-e^{-0.016}}{48}-0.001 e^{-0.016}\right) \\
= & 6.304779 \times 10^{-08}
\end{aligned}
$$

The other possibilities are much less likely, so the total probability is $0.01190451+0.00000941826+0.00000006304779=$ 0.01191399 .
4. Under a critical illness model with transition intensities

$$
\begin{aligned}
& \mu_{x}^{01}=0.001 \\
& \mu_{x}^{02}=0.002 \\
& \mu_{x}^{12}=0.12
\end{aligned}
$$

calculate the premium for a 10-year policy with premiums payable continuously while the life is in the healthy state, which pays a death benefit of $\$ 130,000$ upon entry into state 2, and a benefit of $\$ 80,000$ upon entry into state 1, sold to a life in the healthy state (state 0). The interest rate is $\delta=0.06$ [State 0 is healthy, State 1 is sick and State 2 is dead.]
We calculate

$$
\begin{aligned}
\bar{a}_{x: \overline{10} \mid}^{00} & =\int_{0}^{10} e^{-\delta t}{ }_{t} p_{x}^{00} d t \\
& =\int_{0}^{10} e^{-0.06 t} e^{-0.003 t} d t \\
& =\int_{0}^{10} e^{-0.063 t} d t \\
& =\frac{1-e^{-0.63}}{0.063} \\
& =7.419178
\end{aligned}
$$

$$
\begin{aligned}
\bar{A}_{x: \overline{10} \mid}^{01} & =\int_{0}^{10} e^{-\delta t}{ }_{t} p_{x}^{00} \mu_{x+t}^{01} d t \\
& =0.001 \bar{a}_{x: \overline{10}}^{00}
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{A}_{x: \overline{10} \mid}^{02} & =\int_{0}^{10} e^{-\delta t}{ }_{t} p_{x}^{00} \mu_{x+t}^{02} d t+\int_{0}^{10} \int_{t}^{10} e^{-\delta s}{ }_{t} p_{x}^{\overline{00}} \mu_{x+t s-t}^{01} p_{x}^{\overline{11}} \mu_{x+s}^{12} d s d t \\
& =0.002 \bar{a}_{x: \overline{10} \mid}^{00}+0.00012 \int_{0}^{10} e^{-0.18 s} \int_{0}^{s} e^{0.117 t} d t d s \\
& =0.002 \bar{a}_{x: \overline{10} \mid}^{00}+0.00012 \int_{0}^{10} e^{-0.18 s} \frac{e^{0.117 s}-1}{0.117} d s \\
& =0.002 \bar{a}_{x: \overline{10} \mid}^{00}+\frac{0.00012}{0.117} \int_{0}^{10} e^{-0.063 s}-e^{-0.18 s} d s \\
& =0.002 \bar{a}_{x: \overline{10} \mid}^{00}+\frac{0.00012}{0.117}\left(\frac{1-e^{-0.63}}{0.063}-\frac{1-e^{-1.8}}{0.18}\right) d s \\
& =0.002 \bar{a}_{x: \overline{10} \mid}^{00}+0.002853281
\end{aligned}
$$

The net premium is therefore

$$
\frac{80000 \times 0.001 \bar{a}_{x: \overline{10} \mid}^{00}+130000\left(0.002 \bar{a}_{x: \overline{10} \mid}^{00}+0.002853281\right)}{\bar{a}_{x: \overline{10} \mid}^{00}}=80+260+\frac{370.9266}{7.419178}=\$ 390.00
$$

5. An employer offers a survivor benefit insurance policy. The possible exits from this policy are retirement, surrender, and death. The transition intensities are

$$
\begin{aligned}
& \mu_{x}^{01}=0.002+0.000003 x \\
& \mu_{x}^{03}=0.001+0.000004 x \\
& \mu_{x}^{02}= \begin{cases}0 & \text { if } x<60 \\
0.2(x-60) & \text { if } x \geqslant 60\end{cases}
\end{aligned}
$$

Calculate the probability that an individual aged 34 withdraws from the policy before age 64 . [State 0 is healthy, State 1 is surrender, State 2 is retired and State 3 is dead.]
This probability of surrenderring before age 60 is

$$
\begin{aligned}
\int_{0}^{26}{ }_{t} p_{34}^{\overline{00}} \mu_{34+t}^{01} d t & =\int_{0}^{26} e^{-\left(0.003 t+\frac{0.000007}{2}\left((34+t)^{2}-34^{2}\right)\right)}(0.002+0.000003(34+t)) d t \\
& =\int_{0}^{26} e^{-\left(0.003238 t+0.0000035 t^{2}\right)}(0.002102+0.000003 t) d t \\
& =0.000003 \int_{0}^{26} e^{-0.0000035\left(t^{2}+2 \times 462.1429 t\right)}(700.6667+t) d t \\
& =0.000003 e^{0.7475162}\left(\left(\frac{e^{-0.7475162}-e^{-0.8339922}}{0.000007}\right)-223.6191 \sqrt{\frac{\pi}{0.0000035}}(\Phi(1.291505)-\Phi(1.222715))\right) \\
& =0.0187878
\end{aligned}
$$

This probability of surrenderring between age 60 and age 64 is

$$
\begin{aligned}
& e^{-0.003 \times 26+0.000007\left(60^{2}-34^{2}\right)} \int_{0}^{4} e^{-\left(0.003 t+\frac{0.000007}{2}\left((60+t)^{2}-60^{2}\right)+0.1 t^{2}\right.}(0.002+0.000003(t+60)) d t \\
= & e^{-0.093288} \int_{0}^{4} e^{-0.0000035\left(t^{2}+\left(\frac{0.006}{0.000007}+120\right) t\right)-0.1 t^{2}}(0.00218+0.000003 t) d t \\
= & e^{-0.093288} \int_{0}^{4} e^{-0.1000035\left(t^{2}+2 \times 0.0170994 t\right)}(0.00218+0.000003 t) d t \\
= & 0.000003 e^{-0.093288} \int_{0}^{4} e^{-0.1000035\left(t^{2}+2 \times 0.0170994 t\right)}(t+726.667) d t \\
= & 0.000003 e^{-0.09325876}\left(\frac{e^{-0.00002923997}-e^{-1.613765}}{0.200007}+726.6325 \sqrt{\frac{\pi}{0.1000035}}(\Phi(4.0170994 \sqrt{0.200007})-\Phi(0.0170994 \sqrt{0}\right. \\
= & 0.005139104
\end{aligned}
$$

The overall probability of surrendering is therefore $0.0187878+0.005139104=0.0239269$.

Standard Questions

6. An insurance company is developing a new model for transition intensities in a disability income model. Under these transition intensities it calculates

$$
\begin{aligned}
\bar{a}_{27}^{00} & =18.17 & \bar{a}_{37}^{00} & =17.83 \\
\bar{a}_{37}^{01} & =0.73 & \bar{a}_{37}^{10} & =0.98 \\
\bar{a}_{27}^{01} & =0.84 & \bar{a}_{37}^{11} & =15.42 \\
{ }_{10}^{00} p_{27}^{00} & =0.919 & { }_{10} p_{27}^{01} & =0.026
\end{aligned}
$$

Calculate the premium for a 10-year policy for a life aged 27, with continuous premiums payable while in the healthy state, which pays a continuous benefit while in the sick state, at a rate of $\$ 80,000$ per year, and pays a death benefit of $\$ 900,000$ immediately upon death. [Hint: to calculate A_{x}^{02}, consider how to extend the equation $\bar{a}_{x}=\frac{1-\bar{A}_{x}}{\delta}$ to the multiple state case by combining states 0 and 1.]
The premium is

$$
\frac{80000 \bar{a}_{27: \overline{10} \mid}^{01}+900000 \bar{A}_{27: \overline{10} \mid}^{02}}{\bar{a}_{27: \overline{10} \mid}^{00}}
$$

We therefore just need to calculate the quantities involved in this expression. We have

$$
\bar{a}_{27: \overline{10} \mid}^{00}=\bar{a}_{27}^{00}-e^{-0.5}\left({ }_{10} p_{27}^{00} \bar{a}_{37}^{00}+{ }_{10} p_{27}^{01} \bar{a}_{37}^{10}\right)=18.17-e^{-0.5}(0.919 \times 17.83+0.026 \times 0.98)=8.216074
$$

Similarly

$$
\bar{a}_{27: \overline{10} \mid}^{01}=\bar{a}_{27}^{01}-e^{-0.5}\left({ }_{10} p_{27}^{00} \bar{a}_{37}^{01}+{ }_{10} p_{27}^{01} \bar{a}_{37}^{11}\right)=0.84-e^{-0.5}(0.919 \times 0.73+0.026 \times 15.42)=0.1899265
$$

We can calculate \bar{A}_{27}^{02} because if we combine states 0 and 1 , we have the equation $\bar{a}_{x}=\frac{1-\bar{A}_{x}}{\delta}$. Separating the states, this gives $\bar{a}_{27}^{00}+\bar{a}_{27}^{01}=\frac{1-\bar{A}_{27}^{02}}{\delta}$ so $\bar{A}_{27}^{02}=1-0.05(18.17+0.84)=0.0495$.
Similarly, $\bar{A}_{37}^{02}=1-0.05(17.83+0.73)=0.072$ and $\bar{A}_{37}^{12}=1-0.05(0.98+15.42)=0.18$. Now we have

$$
\bar{A}_{27: \overline{10} \mid}^{02}=\bar{A}_{27}^{02}-e^{-10 \delta}\left({ }_{10} p_{27}^{00} \bar{A}_{37}^{02}+{ }_{10} p_{27}^{01} \bar{A}_{37}^{12}\right)=0.0495-e^{-0.5}(0.919 \times 0.072+0.026 \times 0.18)=0.006528516
$$

The premium is therefore

$$
\frac{80000 \times 0.1899265+900000 \times 0.006528516}{8.216074}=\$ 2564.46
$$

