ACSC/STAT 4720, Life Contingencies II Fall 2017
 Toby Kenney
 Homework Sheet 7
 Model Solutions

Basic Questions

1. An insurance company sells a 5-year annual life insurance policy to a life aged 54 , for whom the lifetable below is appropriate.

x	l_{x}	d_{x}
54	10000.00	12.23
55	9987.77	13.47
56	9974.30	14.82
57	9959.48	16.31
58	9943.16	17.95

The annual gross premium is $\$ 1,252$. Initial expenses are $\$ 170$ plus 30% of the first premium. The death benefits are \$800,000. Renewal costs are 3\% of each subsequent premium. The interest rate is $i=0.05$
(a) Calculate the expected net cash-flows associated with this policy (assuming no reserve). [This is the profit vector for the policy.]
We calculate the following:

t	Premium $($ at $t-1)$	Expenses	Interest	Expected Death Benefits	Net Cash Flow
0		566.00			-566.00
1	1,320	0.00	66.00	978.4	407.60
2	1,320	39.60	64.02	1078.91951857	265.50
3	1,320	39.60	64.02	1188.65484295	155.77
4	1,320	39.60	64.02	1310.10855988	34.31
5	1,320	39.60	64.02	1444.20888329	-99.79

(b) Which of the following is the internal rate of return of the policy:
(i) $i=0.12429$
(ii) $i=0.17937$
(iii) $i=0.23581$
(iv) $i=0.24836$

The profit signature is calculated as follows.

t	P (in force)	Pr_{t}	Π_{t}
0	1.000000	-566.00	-566.00
1	1.000000	407.60	407.60
2	0.998777	265.50048143	265.175774341
3	0.997430	155.76515705	155.364840596
4	0.995948	34.31144012	34.1724101646
5	0.994316	-99.78888329	-99.2216832774

We evaluate
$407.60(1+i)^{-1}+265.175774341(1+i)^{-2}+155.364840596(1+i)^{-3}+34.1724101646(1+i)^{-4}-99.2216832774(1+$ i) $)^{-5}-566$
for each given value of i.

i	NPV
0.12429	81.803322898
0.17937	39.145101864
0.23581	0.003068023
0.24836	-8.128575093

So the answer is (iii) $i=0.22125$.
2. An insurance company sells a 5-year annual life insurance policy to a life aged 32, for whom the lifetable below is appropriate.

x	l_{x}	d_{x}
32	10000.00	2.14
33	9997.86	2.34
34	9995.52	2.56
35	9992.96	2.81
36	9990.15	3.08

The annual gross premium is $\$ 190$. Initial expenses are $\$ 60$ plus 20% of the first premium. The death benefits are $\$ 680,000$. Renewal costs are 2% of each subsequent premium. The interest rate is $i=0.06$. Reserves are calculated on the basis $i=0.04$, with mortality following the table.
(a) Calculate the reserves.

The expected present value of future benefits and future premiums in each year are given below:

Year	EPV future benefits	EPV premiums	Reserve
1	777.27534572	865.497741283	0
2	662.98823903	702.668021889	0
3	530.477868013	537.252486758	0
4	377.635678002	365.188116287	12.447561715
5	201.583174812	186.2	15.383174812

(b) Calculate the profit signature.

We first calculate the profit vector

t	Reserves	Premium (at $t-1)$	Expenses	Interest	Expected Death Benefits	Change in Reserves	Net Cash Flow
0			98.00				-98.00
1	0	190	0.00	11.400	145.52	0.00000000000	55.88000000
2	0	190	3.80	11.172	159.154058969	0.00000000000	38.217941031
3	0	190	3.80	11.172	174.158022794	12.447561715	10.766415491
4	12.447561715	190	3.80	11.9188537029	191.214615089	15.383174812	3.968625517
5	15.383174812	190	3.80	12.0949904887	209.646501804	0.0000000	4.031663497

The profit signature is then calculated as

t	P (in force)	Pr_{t}	Π_{t}
0	1.000000	-98.00	-98.00
1	1.000000	55.88000000	55.88
2	0.999786	38.217941031	38.2097623916
3	0.999552	10.766415491	10.7615921369
4	0.999296	3.968625517	3.96583160464
5	0.999015	4.031663497	4.02769230846

(c) Calculate the profit margin at a risk discount rate of $i=0.08$.

At a risk discount rate of $i=0.08$, the NPV is
$55.88(1.08)^{-1}+38.2097623916(1.08)^{-2}+10.7615921369(1.08)^{-3}+3.96583160464(1.08)^{-4}+4.02769230846(1.08)^{-5}-98=0.6$
The NPV of premiums received is
$190\left(1.000000+0.999786(1.08)^{-1}+0.999552(1.08)^{-2}+0.999296(1.08)^{-3}+0.999015(1.08)^{-4}\right)=818.949730942$
so the profit margin is $\frac{0.6985364851}{818.949730942}=0.085296625508 \%$.
3. For the policy in Question 2:
(a) Calculate the reserves and profit signature for a general premium. [You may assume that P is such that the reserves are zero in Years 1 and 2.]

> The reserve in Year 3 is $680000\left(\frac{2.56}{9995.52}(1.04)^{-1}+\frac{2.81}{9995.52}(1.04)^{-2}+\frac{3.08}{9995.52}(1.04)^{-3}\right)-0.98 P\left(1+\frac{9992.96}{9995.52}(1.04)^{-1}+\frac{9990.15}{9995.52}(1\right.$ $530.477868013-2.82764466716 P$
> The reserve in Year 4 is $680000\left(\frac{2.81}{9992.96}(1.04)^{-1}+\frac{3.08}{9992.96}(1.04)^{-2}\right)-0.98 P\left(1+\frac{9990.15}{9992.96}(1.04)^{-1}\right)=377.635678003-$ $1.9220427173 P$.

The reserve in Year 5 is
$680000\left(\frac{3.08}{9990.15}(1.04)^{-1}\right)-0.98 P=201.583174811-0.98 P$

The profit vector is then

t	Reserves	Prem	Exp.	Interest	Exp. D. Benefits	Exp. Res. Payment	Net Cash Flow
0				$60+0.2 P$			
1	0	P	0.00000	$0.06 P$	145.52	0.00000000000	$1.06 P-0.2 P$
2	0	P	$0.02 P$	$0.0588 P$	159.154	$530.354-2.8270 P$	$3.86578285668 P-689.507768591$
3	$530.478-2.828 P$	P	$0.02 P$	$31.829-0.1109 P$	174.158	$377.539-1.9215 P$	$10.60955736-0.03695289336 P$
4	$377.636-1.922 P$	P	$0.02 P$	$22.658-0.0565 P$	191.215	$201.526-0.97972 P$	$7.496028783-0.01856528034 P$
5	$201.583-0.98 P$	P	$0.02 P$	12.095	209.647		4.031663496

The profit signature is then calculated as

t	$P($ in force $)$	Pr_{t}	Π_{t}
0	1.000000	$-60-0.2 P$	$-60-0.2 P$
1	1.000000	$1.06 P-145.52$	$1.06 P-145.52$
2	0.999786	$3.86578285668 P-689.507768591$	$3.86495557915 P-689.360213929$
3	0.999552	$10.60955736-0.03695289336 P$	$10.6048042783-0.0369363384638 P$
4	0.999296	$7.496028783-0.01856528034 P$	$7.49075157874-0.0185522103826 P$
5	0.999015	4.031663496	4.02769230746

(b) Calculate the premium that gives an internal rate of return of $i=0.12$.

At risk discount rate $i=0.12$, the NPV is $(1.06 P-145.52)(1.12)^{-1}+(3.86495557915 P-689.360213929)(1.12)^{-2}+$ $(10.6048042783-0.0369363384638 P)(1.12)^{-3}+(7.49075157874-0.0185522103826 P)(1.12)^{-4}+(4.02769230746)(1.12)^{-5}-$ $60-0.2 P=3.78946667489 P-724.888094352$
Setting this equal to zero gives $P=\frac{724.888094352}{3.7894667489}=\$ 191.29$
4. For a 5-year term insurance policy sold to a life aged 39, with the following lifetable:

x	l_{x}	d_{x}
39	10000.00	9.64
40	9990.36	10.71
41	9979.65	11.90
42	9967.75	13.23
43	9954.52	14.70

an actuary performs the following profit test without reserves:

Year	Premium	Expenses	Interest	Expected Death Benefits	$P r_{t}$
0		200			-200
1	900	0	36.00	771.00	165.00
2	900	18	35.28	857.90	59.38
3	900	18	35.28	954.19	-36.91
4	900	18	35.28	1061.76	-144.48
5	900	18	35.28	1181.36	-264.08

Calculate the reserves needed to ensure that all cash flows are non-negative.
We work backwards. In the final year, the reserve needed is $264.08(1.04)^{-1}=253.923076923$. The expected reserve payment at the end of Year 4 is therefore $253.923076923 \times \frac{9954.52}{9967.75}=253.58604978$. This makes the net cash flow for Year $4-398.06604978$. The reserve for Year 4 is therefore $398.06604978(1.04)^{-1}=382.755817096$. The expected reserve payment at the end of Year 3 is therefore $382.755817096 \times \frac{9967.75}{9979.65}=382.299408883$.

This makes the net cash flow at the end of Year $3-419.209408883$. The reserve for Year 3 is therefore $419.209408883(1.04)^{-1}=403.08597008$. The expected reserve payment at the end of Year 2 is therefore $403.08597008 \frac{9979.65}{9990.36}=402.653848441$. The net cash flow for Year 2 is therefore -343.273848441 , so the reserve for Year 2 is $343.273848441(1.04)^{-1}=330.071008116$. The expected reserve payment at the end of Year 1 is $330.071008116 \times 0.999036=329.752819664$. The net cash flow at the end of Year 1 is therefore -164.752819664 . The reserve for Year 1 is therefore $164.752819664(1.04)^{-1}=158.416172754$
In summary, the reserves are:

Year	Reserve
1	158.42
2	330.07
3	403.09
4	382.76
5	253.92

Standard Questions

5. An insurer sells a 5-year disability income protection policy for a life aged 42. The transition probabilities are given in the following table:

x	p_{x}^{01}	p_{x}^{02}	p_{x}^{10}	p_{x}^{12}
42	0.002136	0.001426	0.126260	0.082503
43	0.002186	0.001497	0.123351	0.087253
44	0.002241	0.001584	0.120121	0.091034
45	0.002299	0.001715	0.116980	0.096115
46	0.002368	0.001860	0.113402	0.103358

The probability of being in each state at the start of each year is

t	${ }_{t} p_{42}^{00}$	${ }_{t} p_{42}^{01}$
1	0.996438	0.002136
2	0.993031596582	0.003864363324
3	0.989697441912	0.00527376749426
4	0.986341721701	0.00642526842903
5	0.982900107192	0.00736818444134

The policy pays a benefit of $\$ 45,000$ at the end of any year if the life is disabled at that time (State 1), and pays a death benefit of $\$ 350,000$ at the end of the year if the life is dead (State 2). The interest rate is $i=0.07$. Initial expenses are $\$ 400$ plus 20% of the first premium. Renewal expenses are 2% of each subsequent premium. The premium is $\$ 1,460$ at the start of each year. Use a profit test to calculate the reserves for each year in each state using a reserve rate of $i=0.06$ and calculate the profit margin at a risk discount rate of $i=0.08$.

We first perform a profit test in each state without reserves:

Healthy

t	Premium $($ at $t-1)$		Expenses	Interest	Expected Death Benefits	Expected Disability Benefits
0		692.00				Net Cash Flow
1	1,460	0.00	102.200	499.10	96.120	966.00
2	1,460	29.20	100.156	523.95	98.370	908.636
3	1,460	29.20	100.156	554.40	100.845	875.711
4	1,460	29.20	100.156	600.25	103.455	827.251
5	1,460	29.20	100.156	651.00	106.560	773.396

Disabled

t	Premium $($ at $t-1)$	Expenses	Interest	Expected Death Benefits	Expected Disability Benefits	Net Cash Flow
2	0	0	0	30538.55	35522.820	-66061.370
3	0	0	0	31861.90	35498.025	-67359.925
4	0	0	0	33640.25	35410.725	-69050.975
5	0	0	0	36175.30	35245.800	-71421.100

We now work backwards to calculate the reserves:

Year	Healthy Reserves	Disabled Reserves	Expected Healthy Reserve Payment	Expected Disabled Reserve Payment
5	0	67378.3962264		
4	0	115161.671588	154.902932924	53020.3968825
3	0	149249.654551	258.077306029	90844.7088238
2	0	173470.236136	326.259744848	117817.080304
1	0	N/A	370.532424386	N/A

We add these reserves for the disabled state to the profit test (since reserves in the healthy state are all zero, we do not include them).

Healthy

t	Premium $($ at $t-1)$	Expenses	Interest	Expected Death Benefits	Expected Disability Benefits	Expected Reserve Payments	Net Cash Flow
0		692.00			-692.00		
1	1,460	0.00	102.200	499.10	96.120	370.532	596.448
2	1,460	29.20	100.156	523.95	98.370	326.260	582.376
3	1,460	29.20	100.156	554.40	100.845	258.077	617.634
4	1,460	29.20	100.156	600.25	103.455	154.903	672.348
5	1,460	29.20	100.156	651.00	106.560	0	773.396

Disabled

t	Reserves	Premium less Exp.	Interest	Expected Death Benefits	Expected Disability Benefits	Expected Disability Reserve	Net Cash Flow
2	173470.24	0	12142.92	30538.55	35522.820	117817.08	1734.70
3	149249.65	0	10447.48	31861.90	35498.025	90844.71	1492.50
4	115161.67	0	8061.32	33640.25	35410.725	53020.40	1151.62
5	67378.40	0	4716.49	36175.30	35245.800	0	673.78

We now calculate the profit signature:

t	${ }_{(t-1)} p_{42}^{00}$	$(t-1) p_{42}^{01}$	$\operatorname{Pr}_{t}^{(0)}$	$\operatorname{Pr}_{t}^{(1)}$	Π_{t}
0	1	0	-692.00		-692.00
1	1	0	596.447575614	00000000000000	596.447575614
2	0.996438	0.002136	582.376303295	1734.702362	584.007203148
3	0.993031596582	0.003864363324	617.634345542	1492.4965462	619.097969171
4	0.989697441912	0.00527376749426	672.348211088	1151.6167165	671.494663393
5	0.986341721701	0.00642526842903	773.396000000	673.7839623	767.161985018

At risk discount rate $i=0.08$, the NPV is $596.447575614(1.08)^{-1}+584.007203148(1.08)^{-2}+619.097969171(1.08)^{-3}+$ $671.494663393(1.08)^{-4}+767.161985018(1.08)^{-5}-692=1868.10442859$
The EPV of premiums is
$1460+1460 \times 0.996438(1.08)^{-1}+1460 \times 0.993031596582(1.08)^{-2}+1460 \times 0.989697441912(1.08)^{-3}+1460 \times$ $0.986341721701(1.08)^{-4}=6255.56952954$
The profit margin is therefore $\frac{1868.10442859}{6255.56952954}=29.863059147 \%$.

