ACSC/STAT 4720, Life Contingencies II Fall 2018

Toby Kenney
Homework Sheet 5
Due: Friday 26th October: 12:30 PM

Basic Questions

1. A disability income insurance company collects the following claim data (in thousands):

i	d_{i}	x_{i}	u_{i}	i	d_{i}	x_{i}	u_{i}	i	d_{i}	x_{i}	u_{i}
1	0	0.9	-	8	0	2.5	-	15	1.0	-	10
2	0	-	5	9	0	3.8	-	16	1.0	-	10
3	0	-	5	10	0.5	0.8	-	17	2.0	-	10
4	0	0.3	-	11	0.5	2.5	-	18	2.0	3.2	-
5	0	1.1	-	12	1.0	3.5	-	19	5.0	5.0	-
6	0	1.1	-	13	1.0	-	5	20	5.0	6.8	-
7	0	2.1	-	14	1.0	6.0	-	21	5.0	9.1	-

Using a Kaplan-Meier product-limit estimator:
(a) estimate the probability that a random loss exceeds 3.9.
(b) estimate the median of the distribution.
(c) Use a Nelson-Åalen estimator to estimate the median of the distribution.
2. For the data in Question 1, use Greenwood's approximation to obtain a 95% confidence interval for the probability that a random loss exceeds 3.9, based on the Kaplan-Meier estimator.
(a) Using a normal approximation
(b) Using a log-transformed confidence interval.
3. An insurance company records the following data in a mortality study:

entry	death	exit	entry	death	exit	entry	death	exit
67.4	70.3	-	68.6	-	70.4	69.6	-	69.9
66.6	-	69.2	66.5	-	69.4	66.5	-	73.2
68.4	69.1	-	68.1	71.9	-	69.1	-	71.7
67.5	69.4	-	67	69.9	-	68.7	-	72.8
68.8	-	73.9	67	-	69.3	68	-	69.1
68.2	-	73	68.8	70.4	-	67.1	-	69.9
68.5	-	69.5	66.8	-	73.9	67.3	-	71.6
67.5	70.6	-	68.1	-	73	66.6	-	69.1
66	72.4	-	67.4	70.8	-	68.8	-	71.4
66.7	-	69.2	67.3	-	70.1	68	71.5	-
66.3	71.9	-	68.1	-	73	69.3	-	72.1

Estimate the probability of an individual currently aged exactly 69 dying within the next year using:
(a) the exact exposure method.
(b) the actuarial exposure method.
4. Using the following table:

Age	No. at start	enter	die	leave	No. at next age
61	0	22	2	5	15
62	15	29	3	12	29
63	29	19	5	22	21
64	21	29	11	18	21
65	21	30	8	43	0

Estimate the probability that an individual aged 62 withdraws from the policy within the next year, conditional on surviving to the end of the year.
5. In a mortality study of 40 individuals in a disability income policy, an insurance company observes the following transitions, where state H is healthy, D is disabled, S is surrendered and X is dead.

Entry	State	Time	State	Time	State	Exit	Entry	State	Time	State	Exit
57.0	H					58.0	57.0	H	57.7	X	57.7
57.0	H					58.0	57.0	H	57.9	X	57.9
57.0	H					58.0	57.0	D			58.0
57.0	H					58.0	57.0	D			58.0
57.0	H					58.0	57.0	D			58.0
57.0	H					58.0	57.0	D	57.4	X	57.4
57.0	H					58.0	57.2	H			58.0
57.0	H					58.0	57.4	H			58.0
57.0	H					58.0	57.5	H			58.0
57.0	H					58.0	57.7	H			58.0
57.0	H	57.3	S			57.3	57.8	H			58.0
57.0	H	57.4	S			57.4	57.8	H			58.0
57.0	H	57.8	S			57.8	57.9	H			58.0
57.0	H	57.1	D			58.0	57.3	H	57.8	S	57.8
57.0	H	57.1	D			58.0	57.1	D			58.0
57.0	H	57.3	D			58.0	57.4	D			58.0
57.0	H	57.9	D			58.0	57.7	D			58.0
57.0	H	57.1	D	57.7	X	57.7	57.8	D			58.0
57.0	H	57.4	X			57.4	57.2	D	57.6	X	57.6
57.0	H	57.6	X			57.6	57.6	D	57.9	H	58.0

Based on these data, estimate the probability that an individual aged 57.3 who is disabled becomes healthy and later dies before reaching age 58 .

Standard Questions

6. For the study in Question 3, use the exact exposure method, and assume that the number of deaths follows a Poisson distribution with mean exposure times probability of dying to find a 95% confidence interval for q_{69}.
