ACSC/STAT 4720, Life Contingencies II Fall 2018

Toby Kenney Homework Sheet 7 Model Solutions

Basic Questions

1. An insurance company sells a 5-year annual life insurance policy to a life aged 36, for whom the lifetable below is appropriate.

\overline{x}	l_x	d_x
36	10000.00	9.64
37	9990.36	10.13
38	9980.23	10.68
39	9969.55	11.30
40	9958.25	11.98

The annual gross premium is \$625.40. Initial expenses are \$190 plus 40% of the first premium. The death benefits are 500,000. Renewal costs are 3% of each subsequent premium. The interest rate is i = 0.04

(a) Calculate the expected net cash-flows associated with this policy (assuming no reserve). [This is the profit vector for the policy.]

We conduct the following profit test:

Year	Premium	Expenses	Interest	Expected Death Benefits	\Pr_t
0		440.16			-440.16
1	625.40	0	25.016	482	168.416
2	625.40	18.762	24.26552	506.988737143	123.914782857
3	625.40	18.762	24.26552	535.057809289	95.845710711
4	625.40	18.762	24.26552	566.725679695	64.177840305
5	625.40	18.762	24.26552	601.511309718	29.392210282

(b) Which of the following is the internal rate of return of the policy:

(*i*) i = 0.0940

(*ii*) i = 0.1244

(*iii*) i = 0.1576

 $(iv) \ i = 0.1694$

We first compute the profit signature

Year	\Pr_t	P(in force)	Π_t
0	-440.16	1	-440.16
1	168.416	1	168.416
2	123.914782857	0.999036	123.795329006
3	95.845710711	0.998023	95.6562237409
4	64.177840305	0.996955	63.9824187813
5	29.392210282	0.995825	29.2694978041

The NPV at interest rate i is therefore

Substituting the given values of i we get:

i	NPV
0.04002	0.00312808
(i) 0.0940	-46.377043459
(ii) 0.1244	-68.853852347
(iii) 0.1576	-90.914432701
(iv) 0.1694	-98.198168206

We see that none of the values given is the true rate of return, which is i = 0.04002.

2. An insurance company sells a 5-year annual life insurance policy to a life aged 40, for whom the lifetable below is appropriate.

\overline{x}	l_x	d_x
40	10000.00	6.63
41	9993.37	7.37
42	9986.00	8.20
43	9977.80	9.12
44	9968.68	10.16

The annual gross premium is \$280. Initial expenses are \$80 plus 25% of the first premium. The death benefits are \$300,000. Renewal costs are 2% of each subsequent premium. The interest rate is i = 0.05. Reserves are calculated on the basis i = 0.03, with mortality following the table.

(a) Calculate the reserves.

On the reserve basis, we compute:

Year	$\ddot{a}_{t:\overline{5-t} }$	$A^1_{t:\overline{5-t}}$	Reserve
	4.7103207233	0.00377550937872	0
	3.8241657669	0.00322791476757	0
	2.91103759799	0.00258917274172	0
	1.96998637947	0.00184721515452	13.600283849
	1	0.000989506902609	22.452070783

(b) Calculate the profit signature.

We conduct the following profit test:

Year	Initial	Premium	Expenses	Interest	Expected Death	Expected Res.	\Pr_t
	Reserves				Benefits	Payments	
0			150				-150
1	0	280	0	14	198.9	0	95.1
2	0	280	5.4	13.73	221.246686553	0	67.083313447
3	0	280	5.4	13.73	246.344882836	13.5891159812	28.3960011828
4	13.600283849	280	5.4	14.4100141925	274.20874341	22.4315489359	5.9700056961
5	22.452070783	280	5.4	14.8526035392	305.757632906	0	6.147041416

The profit signature is then calculated as follows:

Year	\Pr_t	P(in force)	Π_t
0	-150	1	-150
1	95.1	1	95.1
2	67.083313447	0.999337	67.0388372102
3	28.3960011828	0.998600	28.3562467811
4	5.9700056961	0.997780	5.95675228345
5	6.147041416	0.996868	6.12778888229

(c) Calculate the profit margin at a risk discount rate of i = 0.08.

At risk discount rate i = 0.08, the NPV is

$$95.1(1.08)^{-1} + 67.04(1.08)^{-2} + 28.36(1.08)^{-3} + 5.96(1.08)^{-4} + 6.13(1.08)^{-5} - 150 = 26.589516995$$

The EPV of premiums received is

$$280(1+0.999337(1.08)^{-1}+0.998600(1.08)^{-2}+0.997780(1.08)^{-3}+0.996868(1.08)^{-4}) = 1205.74951161$$

The profit margin is therefore $\frac{26.589516995}{1205.74951161} = 2.2052\%$.

3. For the policy in Question 2:

(a) Calculate the reserves and profit signature for a general premium. [You may assume that P is such that the reserves are zero in Years 1, 2 and 3.]

The reserves in Years 4 and 5 are 554.164546356 - 1.93058665188P and 296.852070783 - 0.98P respectively. The profit test for premium P becomes

Year	Initial	Premium	Expenses	Interest	Expected Death	Expected Res.	\Pr_t
	Reserves				Benefits	Payments	
0			80 + 0.25P				-80 - 0.25P
1	0	P	0	0.05P	198.9	0	1.05P - 198.9
2	0	P	0.02P	0.049P	221.246686553	0	1.029P - 221.25
3	0	P	0.02P	0.049P	246.344882836	553.71 - 1.9290P	2.9580P - 800.05
4	554.16 - 1.9306P	P	0.02P	27.708 - 0.0475P	274.20874341	296.58 - 0.9791P	11.08 - 0.0190P
5	296.85 - 0.98P	P	0.02P	14.843	305.757632906	0	5.937041416

The profit signature is then calculated as follows:

Year	Pr _t	P(in force)	Π_t
0	-80 - 0.25P	1	-80 - 0.25P
1	1.05P - 198.9	1	1.05P - 198.9
2	1.029P - 221.246686553	0.999337	1.028317773P - 221.1
3	2.9580013514P - 800.054377191	0.998600	2.95386014951P - 798.934301063
4	11.083290926 - 0.019011733036P	0.997780	11.0586860201 - 0.0189695269887P
5	5.937041416	0.996868	5.91844660229

(b) Calculate the premium that gives an internal rate of return of i = 0.14.

At risk discount rate i = 0.14, the NPV is

 $\begin{aligned} (1.05P - 198.9)(1.14)^{-1} + (1.0283P - 221.1)(1.14)^{-2} + (2.9539P - 798.93)(1.14)^{-3} + (11.06 - 0.01897P)(1.14)^{-4} \\ + (5.92)(1.14)^{-5} - (80 + 0.25P) \\ = &3.44484974781P - 954.239365696 \end{aligned}$

To get an i.r.r. of i = 0.14, we need this to equal 0. That is, we need to solve

3.44484974781P - 954.239365696 = 0

 $P = \frac{954.239365696}{3.44484974781} = 277.00$

4. For a 5-year term insurance policy sold to a life aged 52, with the following lifetable:

x	l_x	d_x
52	10000.00	30.46
53	9969.54	33.90
54	9935.64	37.72
55	9897.92	41.96
56	9855.95	46.67

an actuary performs the following profit test without reserves:

Year	Premium	Expenses	Interest	Expected Death Benefits	Pr_t
0		200			-200
1	1700	0	102.00	1370.70	431.30
2	1700	54	99.24	1530.16	215.08
3	1700	54	99.24	1708.40	36.84
4	1700	54	99.24	1907.67	-162.43
5	1700	54	99.24	2130.84	-385.60

Calculate the reserves needed to ensure that all cash flows are non-negative.

From the interest in the profit test, we see that the interest rate is $i = \frac{102}{1700} = 0.06$.

For Year 5, the reserve needed is $385.60(1.06)^{-1} = 363.773584906$. The expected reserve payment in Year 4 is therefore $\frac{9855.95}{9897.92} \times 363.773584906 = 362.231081293$. The expected loss in Year 4 is therefore 162.43 + 362.231081293 = 524.661081293. The reserve in Year 4 is $524.661081293(1.06)^{-1} = 494.963284239$. The expected reserve payment in Year 3 is therefore $\frac{9897.92}{9935.64} \times 494.963284239 = 493.084188873$. The loss in Year 3 is 493.084188873 - 36.84 = 456.244188873. The reserve for Year 3 is therefore $\frac{9935.64}{9969.54} \times 430.419046107 = 428.95546748$. The reserve payment in Year 2 is therefore $\frac{9935.64}{9969.54} \times 430.419046107 = 428.95546748$. Therefore, the expected loss is 428.95546748 - 215.08 = 213.87546748. This means the reserve in Year 2 is $213.87546748(1.06)^{-1} = 201.769308943$ and the expected reserve payment in Year 1 is $0.996954 \times 201.769308943 = 201.154719628$.

The new table with reserves is

Year	Initial	Premium	Expenses	Interest	Expected Death	Expected Reserve	\Pr_t
	Reserves				Benefits	Payments	
0		200			-200		
1	0	1700	0	102.00	1370.70	201.15	230.15
2	201.77	1700	54	110.87	1530.16	428.96	0
3	430.42	1700	54	124.59	1708.40	493.08	0
4	494.96	1700	54	128.46	1907.67	362.23	0
5	363.77	1700	54	120.59	2130.84	0	0

Standard Questions

5. An insurer sells a 5-year disability income protection policy for a life aged 48. The transition probabilities are given in the following table:

x	p_x^{01}	p_{x}^{02}	p_x^{10}	p_x^{12}
48	0.002032	0.001362	0.13453	0.06150
49	0.002143	0.001481	0.13264	0.07404
50	0.002305	0.001635	0.13007	0.08787
51	0.002521	0.001810	0.12635	0.10318
52	0.002730	0.002024	0.12395	0.12466

The probability of being in each state at the end of each year is

t	$_{t}p_{48}^{00}$	$_{t}p_{48}^{01}$
1	0.996606	0.001362
\mathcal{Z}	0.993174955536	0.002556475326
$\mathcal{3}$	0.989594366957	0.00362315814575
4	0.985766219786	0.00458270046075
5	0.981647912899	0.00543858612805

The policy pays a benefit of \$35,000 at the end of any year if the life is disabled at that time (State 1), and pays a death benefit of \$540,000 at the end of the year if the life is dead (State 2). The interest rate is i = 0.04. Initial expenses are \$600 plus 30% of the first premium. Renewal expenses are 2.5% of each subsequent premium. The premium is \$1,960 at the start of each year. Use a profit test to calculate the reserves for each year in each state using a reserve rate of i = 0.05 and calculate the profit margin at a risk discount rate of i = 0.12.

First we perform a profit test without reserves at the reserve rate i = 0.05 in the healthy state:

Yea	ar Premium	Expenses	Interest	Expected Death	Expected Dis	\Pr_t
				Benefits	Benefits	
0		1188			-1188	
1	1960	0	98	735.48	71.12	1251.4
2	1960	49	95.55	799.74	75.005	1131.805
3	1960	49	95.55	882.90	80.675	1042.975
4	1960	49	95.55	977.40	88.235	940.915
5	1960	49	95.55	1092.96	95.550	818.04

and in the disabled state:

Year	Premium	Expenses	Interest	Expected Death	Expected Dis	\Pr_t
				Benefits	Benefits	
2	0	0	0	39981.60	27766.20	-67747.80
3	0	0	0	47449.80	27372.10	-74821.90
4	0	0	0	55717.20	26966.45	-82683.65
5	0	0	0	67316.40	26298.65	-93615.05

Now we compute the reserve payments in both states:

		Health	У		Disabled	
Year	Loss without	Reserve	Expected Reserve	Loss without	Reserve	Expected Reserve
	Reserves		Payment	Reserves		Payment
1	-1251.4	0	271.706061121			
2	-1131.805	0	264.563114963	67747.80	199490.500089	141717.225093
3	-1042.975	0	235.714976707	74821.90	178638.160002	112748.168002
4	-940.915	0	161.374514762	82683.65	144168.181472	68692.9405462
5	-818.04	0	0	93615.05	89157.190476	0

With these reserves, we adjust the profit tests, also using the interest rate i = 0.04. In the healthy state:

			-				*
Year	Premium	Expenses	Interest	Expected Deat	h Expected Dis	Expected Res.	\Pr_t
				Benefit	ts Benefits	Payments	
0		1188			-1188	;	
1	1960	0	78.40	735.4	8 71.12	271.706061121	960.093938879
2	1960	49	76.44	799.7	75.005	264.563114963	848.131885037
3	1960	49	76.44	882.9	0 80.675	235.714976707	788.150023293
4	1960	49	76.44	977.4	0 88.235	161.374514762	760.430485238
5	1960	49	76.44	1092.9	6 95.550	0	798.93
and in	n the disable	d state:					
r	Initial Pre	mium Exp	enses In	nterest Expected	l Death Expect	ed Dis Expected	l Res. Pr
P	OFORTO			1	Bonofits B	onofite Por	mont

	Reserve				Benefits	Benefits	Payment	
2	199490.50	0	0	7979.62	39981.60	27766.20	141717.23	-1994.91
3	178638.16	0	0	7145.53	47449.80	27372.10	112748.17	-1786.38
4	144168.18	0	0	5766.73	55717.20	26966.45	68692.94	-1441.68
5	89157.19	0	0	3566.29	67316.40	26298.65	0	-891.57

The profit signature is then calculated as follows:

	Hea	althy	Dis		
Year	\Pr_t	P(in force)	\Pr_t	P(in force)	Π_t
0	-1188	1	0	0	-1188
1	960.093938879	1		0	960.093938879
2	848.131885037	0.996606	-1994.905	0.001362	842.536264809
3	788.150023293	0.993174955536	-1786.3816	0.002556475326	778.204023857
4	760.430485238	0.989594366957	-1441.6818152	0.00362315814575	747.294283442
5	798.93	0.985766219786	-891.571905	0.00458270046075	783.472398994

At risk discount rate i = 0.12, the NPV is

$$960.09(1.12)^{-1} + 842.54(1.12)^{-2} + 778.20(1.12)^{-3} + 747.29(1.12)^{-4} + 783.47(1.12)^{-5} - 1188 = 1814.28404293$$

The EPV of premiums is

 $1960 \left(1 + 0.996606 (1.12)^{-1} + 0.993175 (1.12)^{-2} + 0.989594 (1.12)^{-3} + 0.985766 (1.12)^{-4}\right) = 7864.35448394$ Therefore the profit margin is $\frac{1814.28404293}{7864.35448394} = 23.0697\%$.