MATH 3090, Advanced Calculus I
 Fall 2006
 Final Examination
 Model Solutions

1 Which of the following series of functions converge uniformly on the interval (0,1)?
(a) $\sum_{n=1}^{\infty} \frac{1}{(x+n)^{2}}$

As $x>0, \frac{1}{(x+n)^{2}}<\frac{1}{n^{2}}$, so this series converges uniformly by the Weierstrass M-test with $M_{n}=\frac{1}{n^{2}}$.
(b) $\sum_{n=1}^{\infty} \frac{1}{(x+1)^{n}}$

The error in the N th partial sum is $\sum_{n=N+1}^{\infty} \frac{1}{(x+1)^{n}}=\frac{1}{(x+1)^{N+1}} \times \frac{1}{1-\frac{1}{x+1}}=$ $\frac{1}{x(x+1)^{N}}$. If we choose $\epsilon=\frac{1}{2}$, given any N, we can choose $x=2^{\frac{1}{N}}-1$ (so that $\left.(x+1)^{N}=2\right)$. Then $\frac{1}{x(x+1)^{N}} \geqslant \frac{1}{2}\left(x<1\right.$, so $\left.\frac{1}{x}>1\right)$. Therefore, the series does not converge uniformly.

2 Which of the following series converge? For series which converge, is the convergence absolute? Justify your answers. (You may assume convergence of geometric series and $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ for $p>1$, and divergence of $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ for $p \leqslant 1$.)
(a) $\sum_{n=0}^{\infty}(-1)^{n} \frac{3}{2 n+5}$
$\frac{3}{2 n+5}$ is a decreasing function of n, so by the alternating series test, the series converges. For $n \geqslant 5, \frac{3}{2 n+5} \geqslant \frac{1}{n}$, so the series does not converge absolutely by comparison to $\sum_{n=5}^{\infty} \frac{1}{n}$.
(b) $\sum_{n=0}^{\infty} \frac{1 \times 4 \times 7 \times \cdots \times(3 n+1)}{2 \times 5 \times 8 \times \cdots \times(3 n+5)}$
$1 \times 4 \times 7 \times \cdots \times(3 n+1)=3^{n+1} \frac{\Gamma\left(n+\frac{4}{3}\right)}{\Gamma\left(\frac{1}{3}\right)}$, while $2 \times 4 \times 8 \times \cdots \times(3 n+5)=$ $3^{n+2} \frac{\Gamma\left(n+\frac{8}{3}\right)}{\Gamma\left(\frac{2}{3}\right)}$. Therefore, the series is:

$$
\frac{\Gamma\left(\frac{2}{3}\right)}{3 \Gamma\left(\frac{1}{3}\right)} \sum_{n=0}^{\infty} \frac{\Gamma\left(n+\frac{4}{3}\right)}{\Gamma\left(n+\frac{8}{3}\right)}
$$

and we know that $\frac{\Gamma(x) x^{\alpha}}{\Gamma(x+\alpha)} \rightarrow 1$ as $x \rightarrow \infty$, so taking $x=\left(n+\frac{4}{3}\right)$ and $\alpha=\frac{4}{3}$, for large n, the series is approximately $\sum \frac{1}{\left(n+\frac{4}{3}\right)^{\frac{4}{3}}}$, which converges
by comparison to $\sum \frac{1}{n^{\frac{4}{3}}}\left(\frac{4}{3}>1\right)$. Since all the terms are positive, the convergence is absolute.

3 Prove that the ratio test works - i.e. show that if a_{n} is a sequence of positive real numbers, and $\frac{a_{n+1}}{a_{n}} \rightarrow x<1$ as $n \rightarrow \infty$, then $\sum_{n=0}^{\infty} a_{n}$ converges. [You may assume the comparison test and convergence of geometric series.]

Theorem 1. If a_{n} is a sequence of positive real numbers, and $\frac{a_{n+1}}{a_{n}} \rightarrow$ $x<1$ as $n \rightarrow \infty$, then $\sum_{n=0}^{\infty} a_{n}$ converges.

Proof. Since $x<1$, there is an $\epsilon>0$ such that $x+\epsilon<1$. As $\frac{a_{n+1}}{a_{n}} \rightarrow x$, we can choose N so that for $n>N,\left|\frac{a_{n+1}}{a_{n}}-x\right|<\epsilon$, and thus $\frac{a_{n+1}}{a_{n}}<x+\epsilon$. This means that $a_{N+1}<(x+\epsilon) a_{N}, a_{N+2}<(x+\epsilon) a_{N+1}<(x+\epsilon)^{2} a_{N}$, and so on. In general, $a_{N+k}<(x+\epsilon)^{k} a_{N}$ (We can prove this by induction). However, the series $\sum_{n=k}^{\infty} a_{N}(x+\epsilon)^{k}$ is a geometric series, with common ratio less than 1 , so it converges. Therefore, $\sum_{n=N}^{\infty} a_{n}$ converges by the comparison test. Also, $\sum_{n=0}^{N-1} a_{n}$ is a finite sum, so it converges. Therefore, $\sum_{n=0}^{\infty} a_{n}$ converges.

4 Find the radius of convergence of the following series.
(a) $\sum_{n=0}^{\infty} \frac{x^{2 n}}{4^{n}(n+3)}$

The ratio $\frac{a_{n+1}}{a_{n}}$ of consecutive terms in this series is $\frac{x^{2 n+2} 4^{n}(n+3)}{x^{2 n} 4^{n+1}(n+4)}=\frac{x^{2}(n+3)}{4(n+4)}$. However, as $n \rightarrow \infty, \frac{n+3}{n+4} \rightarrow 1$, so the ratio of consecutive terms $\frac{a_{n+1}}{a_{n}} \rightarrow \frac{x^{2}}{4}$ as $n \rightarrow \infty$. Therefore, by the ratio test, the series converges whenever $|x|<2$, and diverges whenever $|x|>2$. Thus the radius of convergence is 2.
(b) $\sum_{n=0}^{\infty} \frac{2^{n} x^{n}}{n!}$

The ratio $\frac{a_{n+1}}{a_{n}}$ of consecutive terms in this series is $\frac{2^{n+1} x^{n+1} n!}{2^{n} x^{n}(n+1)!}=\frac{2 x}{n+1}$. For any value of $x, \frac{2 x}{n+1} \rightarrow 0$ as $n \rightarrow \infty$. Therefore, the series converges for all x, so its radius of convergence is infinite.

5 Find the Fourier series for the following functions: [You may use either the $\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}$ or the $\frac{1}{2} a_{0}+\sum_{n=0}^{\infty} a_{n} \cos (n x)+b_{n} \sin (n x)$ form for the Fourier series]
(a) $f(x)=x^{2}$ for $0 \leqslant x<2 \pi$, and $f 2 \pi$-periodic.
$\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}$

The coefficients c_{n} are given by $c_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} x^{2} e^{-i n x} d x$. For $n=0$, we get $c_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} x^{2} d x=\frac{4 \pi^{2}}{3}$. For $n \neq 0$, we integrate by parts:

$$
\begin{aligned}
& c_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} x^{2} e^{-i n x} d x=\frac{1}{2 \pi}\left(\left[\frac{x^{2} e^{-i n x}}{-i n}\right]_{0}^{2 \pi}-\int_{0}^{2 \pi} \frac{2 x e^{-i n x}}{-i n} d x\right) \\
& =\frac{1}{2 \pi}\left(\frac{4 \pi^{2}}{-i n}-\left[\frac{2 x e^{-i n x}}{-n^{2}}\right]_{0}^{2 \pi}+\int_{0}^{2 \pi} \frac{2 e^{-i n x}}{-n^{2}} d x\right) \\
& =\frac{1}{2 \pi}\left(\frac{4 \pi^{2}}{-i n}+\frac{4 \pi}{n^{2}}\right)=\frac{2}{n^{2}}+\frac{2 \pi i}{n}
\end{aligned}
$$

Therefore, the Fourier series is $f(x)=\frac{4 \pi^{2}}{3}+\sum_{n \neq 0}\left(\frac{2}{n^{2}}+\frac{2 \pi i}{n}\right) e^{i n x}$.

$$
\frac{1}{2} a_{0}+\sum_{n=0}^{\infty} a_{n} \cos (n x)+b_{n} \sin (n x)
$$

The calculation of a_{0} is similar to that of c_{0}, and gives $a_{0}=\frac{8 \pi^{2}}{3}$. The other coefficients are given by

$$
\begin{aligned}
& a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} x^{2} \cos (n x) d x \\
& =\frac{1}{\pi}\left(\left[\frac{x^{2} \sin (n x)}{n}\right]_{0}^{2 \pi}-\int_{0}^{2 \pi} \frac{2 x \sin (n x)}{n} d x\right) \\
& =\frac{1}{\pi}\left(\left[\frac{2 x \cos (n x)}{n^{2}}\right]_{0}^{2 \pi}-\int_{0}^{2 \pi} \frac{2 \cos (n x)}{n^{2}} d x\right) \\
& =\frac{4}{n^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
& b_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} x^{2} \sin (n x) d x \\
& =\frac{1}{\pi}\left(\left[-\frac{x^{2} \cos (n x)}{n}\right]_{0}^{2 \pi}+\int_{0}^{2 \pi} \frac{2 x \cos (n x)}{n} d x\right) \\
& =\frac{1}{\pi}\left(-\frac{4 \pi^{2}}{n}+\left[\frac{2 x \sin (n x)}{n^{2}}\right]_{0}^{2 \pi}-\int_{0}^{2 \pi} \frac{2 \sin (n x)}{n^{2}} d x\right) \\
& =-\frac{4 \pi}{n}
\end{aligned}
$$

So the Fourier series is $f(x)=\frac{4 \pi^{2}}{3}+\sum_{n=1}^{\infty} \frac{4 \cos (n x)}{n^{2}}-\frac{4 \pi \sin (n x)}{n}$.
(b) $f(x)=\left\{\begin{array}{ll}1 & \text { if }-\pi<x \leqslant-\frac{\pi}{2} \\ -\frac{1}{2} & \text { if }-\frac{\pi}{2}<x \leqslant \pi\end{array}\right.$ and $f 2 \pi$-periodic.
$\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}$
The coefficients c_{n} for $n \neq 0$ are given by

$$
\begin{aligned}
& c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x= \\
& \frac{1}{2 \pi}\left(\int_{-\pi}^{-\frac{\pi}{2}} e^{-i n x} d x+\frac{1}{2} \int_{-\frac{\pi}{2}}^{\pi}-e^{-i n x} d x\right) \\
& =\frac{1}{2 \pi}\left(\frac{i^{n}-(-1)^{n}}{-i n}-\frac{(-1)^{n}-i^{n}}{-2 i n}\right)=\frac{3\left(i^{n+1}-i^{2 n+1}\right)}{4 \pi n}
\end{aligned}
$$

and $c_{0}=\frac{1}{2 \pi}\left(\int_{-\pi}^{-\frac{\pi}{2}} 1 d x+\int_{-\frac{\pi}{2}}^{\pi}-\frac{1}{2} d x\right)=-\frac{1}{8}$. Therefore, the Fourier series is $f(x)=-\frac{1}{8}+\frac{3}{4} \sum_{n \neq 0} \frac{i^{n+1}-i^{2 n+1}}{\pi n} e^{i n x}$.
$\frac{1}{2} a_{0}+\sum_{n=0}^{\infty} a_{n} \cos (n x)+b_{n} \sin (n x)$
From the above calculation, we get $a_{0}=-\frac{1}{4}$, while:

$$
\begin{aligned}
& a_{n}=\frac{1}{2 \pi}\left(\int_{-\pi}^{-\frac{\pi}{2}} \cos (n x) d x+\frac{1}{2} \int_{-\frac{\pi}{2}}^{\pi}-\cos (n x) d x\right)=\frac{1}{2 \pi}\left(\frac{\sin \left(-\frac{n}{2} \pi\right)}{n}+\frac{\sin \left(-\frac{n}{2} \pi\right)}{2 n}\right) \\
& = \begin{cases}0 & \text { if } n \text { is even } \\
\frac{-3}{4 \pi n} & \text { if } n=4 k+1 \text { for some integer } k \\
\frac{3}{4 \pi n} & \text { if } n=4 k+3 \text { for some integer } k\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
& b_{n}=\frac{1}{2 \pi}\left(\int_{-\pi}^{-\frac{\pi}{2}} \sin (n x) d x+\frac{1}{2} \int_{-\frac{\pi}{2}}^{\pi}-\sin (n x) d x\right) \\
& =\frac{1}{2 \pi}\left(\frac{(-1)^{n}-\cos \left(-\frac{n}{2} \pi\right)}{n}+\frac{(-1)^{n}-\cos \left(-\frac{n}{2} \pi\right)}{2 n}\right) \\
& = \begin{cases}\frac{3}{2 \pi n} & \text { if } n \text { is even but not divisible by } 4 \\
0 & \text { if } n \text { is divisible by } 4 \\
\frac{3}{4 \pi n} & \text { if } n \text { is odd }\end{cases}
\end{aligned}
$$

Therefore, the Fourier series is $f(x)=-\frac{1}{8}+\frac{3}{4} \sum_{k=0}^{\infty} \frac{-\cos ((4 k+1) x)-\sin ((4 k+1) x)}{\pi(4 k+1)}+$ $\frac{-2 \sin ((4 k+2) x)}{\pi(4 k+2)}+\frac{\cos ((4 k+3) x)-\sin (4 k+3) x}{\pi(4 k+3)}$.
(c) $f(x)=\left\{\begin{array}{ll}4 & \text { if }-\frac{\pi}{2}<x \leqslant 0 \\ 1 & \text { if }-\pi<x \leqslant-\frac{\pi}{2} \text { or } 0<x \leqslant \pi\end{array}\right.$ and $f 2 \pi$-periodic.

This f is obtained from the f in (b) by multiplying by 2 , adding 2 , and making the change of variable $x \mapsto x+\frac{\pi}{2}$. i.e. If $g(x)= \begin{cases}1 & \text { if }-\pi<x \leqslant-\frac{\pi}{2} \\ -\frac{1}{2} & \text { if }-\frac{\pi}{2}<x \leqslant \pi\end{cases}$ and g is 2π-periodic, then $f(x)=2 g\left(x-\frac{\pi}{2}\right)+2$, so its Fourier series is: $f(x)=\frac{7}{4}+\sum_{n \neq 0} \frac{3\left(i^{n+1}-i^{2 n+1}\right)}{2 \pi n} e^{i n\left(x-\frac{\pi}{2}\right)}=\frac{7}{4}+\sum_{n \neq 0} \frac{3\left(i-i^{n+1}\right)}{2 \pi n} e^{i n x}$. Alternatively,

$$
\begin{array}{r}
f(x)=\frac{7}{4}+\frac{3}{2} \sum_{k=0}^{\infty} \frac{-\cos \left((4 k+1)\left(x-\frac{\pi}{2}\right)\right)-\sin \left((4 k+1)\left(x-\frac{\pi}{2}\right)\right)}{\pi(4 k+1)} \\
+\frac{-2 \sin \left((4 k+2)\left(x-\frac{\pi}{2}\right)\right)}{\pi(4 k+2)}+\frac{\cos \left((4 k+3)\left(x-\frac{\pi}{2}\right)\right)-\sin \left((4 k+3)\left(x-\frac{\pi}{2}\right)\right)}{\pi(4 k+3)} \\
=\frac{7}{4}+\frac{3}{2} \sum_{k=0}^{\infty} \frac{-\sin ((4 k+1) x)+\cos ((4 k+1) x)}{\pi(4 k+1)}+\frac{2 \sin ((4 k+2) x)}{\pi(4 k+2)} \\
+\frac{-\sin ((4 k+3) x)-\cos ((4 k+3) x)}{\pi(4 k+3)}
\end{array}
$$

6 Find the Fourier sine series for the following functions on the interval $[0, \pi]$.
(a) $f(x)=\sin ^{2} x$

The coefficients b_{n} are given by:

$$
\begin{aligned}
& b_{n}=\frac{2}{\pi} \int_{0}^{\pi} \sin ^{2} x \sin (n x) d x=\frac{2}{\pi} \int_{0}^{\pi} \frac{1-\cos (2 x)}{2} \sin (n x) d x \\
& =\frac{1}{\pi} \int_{0}^{\pi}\left(\sin (n x)-\frac{\sin ((n+2) x)+\sin ((n-2) x)}{2}\right) d x \\
& = \begin{cases}\frac{1}{\pi}\left(\frac{2}{n}-\frac{1}{n+2}-\frac{1}{n-2}\right) & \text { if } n \text { is odd } \\
0 & \text { if } n \text { is even }\end{cases}
\end{aligned}
$$

Therefore, the Fourier sine series is

$$
f(x)=\sum_{m=0}^{\infty} \frac{-8}{\pi(2 m+1)\left((2 m+1)^{2}-4\right)} \sin ((2 m+1) x)
$$

(b) $f(x)=x(\pi-x)$

The Fourier coefficients are given by:

$$
b_{n}=\frac{2}{\pi} \int_{0}^{\pi} x(\pi-x) \sin (n x) d x=\frac{2}{\pi}\left(\left[\frac{-x(\pi-x) \cos (n x)}{n}\right]_{0}^{\pi}+\int_{0}^{\pi} \frac{(\pi-2 x) \cos (n x)}{n} d x\right)
$$

$$
\begin{aligned}
& =\frac{2}{\pi}\left(\left[\frac{(\pi-2 x) \sin (n x)}{n^{2}}\right]_{0}^{\pi}-\int_{0}^{\pi} \frac{-2 \sin (n x)}{n^{2}} d x\right)=\frac{2}{\pi}\left[\frac{-2 \cos (n x)}{n^{3}}\right]_{0}^{\pi} \\
& =\frac{4\left(1-(-1)^{n}\right)}{\pi n^{3}}= \begin{cases}\frac{8}{\pi n^{3}} & \text { if } n \text { is odd } \\
0 & \text { if } n \text { is even }\end{cases}
\end{aligned}
$$

So the sine series is $f(x)=\sum_{m=0}^{\infty} \frac{8 \sin ((2 m+1) x)}{\pi(2 m+1)^{3}}$.

7 Given that $f(x)=x$ on $[-\pi, \pi]$, extended to a 2π-periodic function, has Fourier series $f(x)=\sum_{n \neq 0} \frac{(-1)^{n+1}}{i n} e^{i n x}$, use Parseval's identity to show that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.

Parseval's identity: $\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)|^{2} d x$.
This gives $\sum_{n \neq 0} \frac{1}{n^{2}}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x^{2} d x=\frac{1}{2 \pi}\left[\frac{x^{3}}{3}\right]_{-\pi}^{\pi}=\frac{2 \pi^{2}}{6 \pi}=\frac{\pi^{2}}{3}$.
However, in this sum, we have counted each $\frac{1}{n^{2}}$ twice - once for n and once for $-n$, so $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.

8 A guitar string of length 1 is plucked at the point one third of the way along its length. When it is plucked, the displacement is therefore given by $u(x, 0)= \begin{cases}\frac{x}{2} & \text { if } x \leqslant \frac{1}{3} \\ \frac{1-x}{4} & \text { if } \frac{1}{3}<x \leqslant 1 . \text {. It is then released from rest in this }\end{cases}$ position (so $\frac{\partial u}{\partial t}(x, 0)=0$). Use separation of variables and Fourier series to find $u(x, t)$ for $t>0$. (The ends of the string are fixed, so $u(0, t)=$ $u(1, t)=0$. You may assume the string satisfies the wave equation $\frac{\partial^{2} u}{\partial t^{2}}=$ $c^{2} \frac{\partial^{2} u}{\partial x^{2}}$.) [2 marks]

We first look for solutions of the form $u(x, t)=\Theta(x) \Phi(t)$ that satisfy the wave equation $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$, and the boundary conditions $u(0, t)=$ $u(1, t)=0$. When $u(x, t)=\Theta(x) \Phi(t)$, the wave equation becomes $\Theta(x) \ddot{\Phi}(t)=$ $c^{2} \Theta^{\prime \prime}(x) \Phi(t)$, so $\frac{\ddot{\Phi}(t)}{\Phi(t)}=c^{2} \frac{\Theta^{\prime \prime}(x)}{\Theta(x)}$. The left-hand side depends only on t, while the right-hand side depends only on x, so both must equal some constant λ. To get $u(0, t)=u(1, t)=0$, we must have $\Theta(0)=\Theta(1)=0$, and Θ satisfies $\Theta^{\prime \prime}(x)-\frac{\lambda}{c^{2}} \Theta(x)=0$. To get $\Theta(0)=\Theta(1)=0$, we must have $\Theta(x)=\sin (n \pi x)$ for some integer n. For this to be a solution to $\Theta^{\prime \prime}(x)-\frac{\lambda}{c^{2}} \Theta(x)=0$, we must have that $\lambda=-n^{2} \pi^{2} c^{2}$. We now solve for Φ, to get $\Phi(t)=a \cos (n \pi c t)+b \sin (n \pi c t)$ for some a and b. However, because $\frac{\partial u}{\partial t}(x, 0)=0$, we must have $\dot{\Phi}(0)=0$, and therefore, $b=0$.
We therefore have solutions of the form $a \sin (n \pi x) \cos (n \pi c t)$ for n an integer. (In fact, we may assume that n is a positive integer, since sine and cosine are odd and even respectively, so the function for $-n$ is just -1 times the function for n.) Our general solution is just a sum of these:
$u(x, t)=\sum_{n=1}^{\infty} a_{n} \sin (n \pi x) \cos (n \pi c t)$. Now, using our initial condition, we can find the a_{n} as the coefficients of the Fourier sine series for the initial displacement.

$$
\begin{aligned}
& a_{n}=2 \int_{0}^{1} u(x, 0) \sin (n \pi x) d x=2\left(\int_{0}^{\frac{1}{3}} \frac{x \sin (n \pi x)}{2} d x+\int_{\frac{1}{3}}^{1} \frac{(1-x) \sin (n \pi x)}{4} d x\right) \\
& =\left[-\frac{x \cos (n \pi x)}{n \pi}\right]_{0}^{\frac{1}{3}}+\int_{0}^{\frac{1}{3}} \frac{\cos (n \pi x)}{n \pi} d x+\left[-\frac{(1-x) \cos (n \pi x)}{2 n \pi}\right]_{\frac{1}{3}}^{1}-\int_{\frac{1}{3}}^{1} \frac{\cos (n \pi x)}{n \pi} d x \\
& =-\frac{\cos \left(\frac{n \pi}{3}\right)}{3 n \pi}+\frac{\sin \left(\frac{n \pi}{3}\right)}{n^{2} \pi^{2}}+\frac{\cos \left(\frac{n \pi}{3}\right)}{3 n \pi}+\frac{\sin \left(\frac{n \pi}{3}\right)}{n^{2} \pi^{2}} \\
& =2 \frac{\sin \left(\frac{n \pi}{3}\right)}{n^{2} \pi^{2}}= \begin{cases}0 & \text { if } n=3 m \text { for some integer } m \\
\frac{(-1)^{m} \sqrt{3}}{(3 m+1)^{2} \pi^{2}} & \text { if } n=3 m+1 \text { for some integer } m \\
\frac{(-1)^{m} \sqrt{3}}{(3 m+2)^{2} \pi^{2}} & \text { if } n=3 m+2 \text { for some integer } m\end{cases}
\end{aligned}
$$

Therefore, the string satisfies $u(x, t)=\sum_{m=0}^{\infty} \frac{(-1)^{m} \sqrt{3} \sin ((3 m+1) \pi x) \cos ((3 m+1) \pi c t)}{(3 m+1)^{2} \pi^{2}}+$ $\frac{(-1)^{m} \sqrt{3} \sin ((3 m+2) \pi x) \cos ((3 m+2) \pi c t)}{(3 m+2)^{2} \pi^{2}}$ for $t>0$.

9 A metal rod of length π, satisfying the heat equation $\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}$, where $u(x, t)$ is the temperature of the point a distance x along the rod at time t, is heated to a uniform $50^{\circ} \mathrm{C}$, then one end of the rod is fixed at $0^{\circ} \mathrm{C}$, so that $u(0, t)=0$ for all t, and the other end is insulated, so that $\frac{\partial u}{\partial x}(\pi, t)=0$ for all t.
(a) Use separation of variables to find a family of solutions $u(x, t)$, that can be expressed as $\Theta(x) \Phi(t)$, that satisfy the heat equation $\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}$ and the boundary conditions $u(0, t)=0$ and $\frac{\partial u}{\partial x}(\pi, t)=0$ for all t. [Hint: to satisfy the boundary conditions, you should get $\Theta(x)=c \sin \left(\left(n+\frac{1}{2}\right) x\right)$ for constant c.]

We look for a solution of the form $u(x, t)=\Theta(x) \Phi(t)$. The heat equation then becomes $\Theta(x) \dot{\Phi}(t)=k \Theta^{\prime \prime}(x) \Phi(t)$, and so $\frac{\dot{\Phi}(t)}{\Phi(t)}=k \frac{\Theta^{\prime \prime}(x)}{\Theta(x)}$. The left-hand side depends only on t, while the right-hand side depends only on x, so they must both be equal to some constant λ. The boundary conditions, $u(0, t)=0$ and $\frac{\partial u}{\partial x}(\pi, t)=0$ for all t, mean that $\Theta(0)=0$ and $\Theta^{\prime}(\pi)=0$. To get this, we must have $\Theta(x)=a \sin \left(\left(n+\frac{1}{2}\right) x\right)$, and so $\lambda=-\left(n+\frac{1}{2}\right)^{2} k$. Therefore, the solutions are

$$
u_{n}(x, t)=a_{n} \sin \left(\left(n+\frac{1}{2}\right) x\right) e^{-\left(n+\frac{1}{2}\right)^{2} k t}
$$

Use Fourier series to find a solution for $u(x, t)$ that satisfies the boundary conditions and the intial condition $u(x, 0)=50$ for all x. [Hint: since you're trying to get a series with terms $\sin \left(\left(n+\frac{1}{2}\right) x\right)$, you will need to extend $u(x, 0)$ to a function on $[0,2 \pi]$. To get only the odd terms, you should make the extension symmetric about $\pi($ so $u(2 \pi-x, 0)=u(x, 0))$.]

We have that $u(x, t)=\sum_{n=0}^{\infty} a_{n} \sin \left(\left(n+\frac{1}{2}\right) x\right) e^{-\left(n+\frac{1}{2}\right)^{2} k t}$, and $u(x, 0)=$ 50 for all x. We need to express $u(x, 0)$ as a sum of functions of the form $a_{n} \sin \left(\left(n+\frac{1}{2}\right) x\right)$. To do this, we see that if we extend f to a function on the interval $[0,2 \pi]$, then its sine series will have terms of the form $a_{n} \sin \left(\frac{m}{2} x\right)$ for a natural number m. We need to ensure that the terms for even n are all zero. This can be done by extending f in such a way that it is symmetric about π, since $\sin (k x)$ satisfies $\sin (k(2 \pi-$ $x))=-\sin (k x)$ for any integer k, so if f is symmetric about π, then $\int_{0}^{2 \pi} f(x) \sin (k x) d x=0$. On the other hand, $\int_{0}^{2 \pi} f(x) \sin \left(\left(n+\frac{1}{2}\right) x\right) d x=$ $2 \int_{0}^{\pi} f(x) \sin \left(\left(n+\frac{1}{2}\right) x\right) d x$, so the Fourier coefficients are:
$a_{n}=\frac{2}{\pi} \int_{0}^{\pi} 50 \sin \left(\left(n+\frac{1}{2}\right) x\right)=\frac{2}{\pi}\left[\frac{-50 \cos \left(\left(n+\frac{1}{2}\right) x\right)}{n+\frac{1}{2}}\right]_{0}^{\pi}=\frac{100}{\left(n+\frac{1}{2}\right) \pi}$
Therefore, the solution is $u(x, t)=\sum_{n=0}^{\infty} \frac{100 \cos \left(\left(n+\frac{1}{2}\right) x\right) e^{-\left(n+\frac{1}{2}\right)^{2} k t}}{\left(n+\frac{1}{2}\right) \pi}$.

