MATH 3090, Advanced Calculus I Fall 2006 Toby Kenney Homework Sheet 2

Due in: Monday 25th September, 11:30 AM

On this sheet, all sequences are sequences of real numbers. Please hand in solutions to questions 1-3. Question 4 is for interest only – feel free to collaborate on it or ask me about it.

Compulsory questions

- 1 Which of these series converge? In each case, determine whether the convergence is absolute. Justify your answers.
 - (a) $\sum_{n=0}^{\infty} (-1)^n \frac{n^2+3}{n^3-7n+4}$ (b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\arctan n}$

 - (c) $\sum_{n=1}^{\infty} (-1)^n \left(1 \cos\left(\frac{1}{n}\right) \right)$ [Hint: you'll need to use a polynomial approximation to $\cos \theta$. You may use $|\sin \theta| \leq |\theta|$ to prove your approximation.] (d) $\sum_{n=0}^{\infty} (-1)^n \frac{2+(-1)^n}{n}$
 - (e) $\sum_{n=1}^{\infty} a_n$ where $a_n = \begin{cases} \frac{2}{m} & \text{if } n = m^2 \\ \frac{-1}{n} & \text{if } n \text{ is not a perfect square} \end{cases}$
- 2 We showed (Theorem 6.18) that if $\sum_{n=0}^{\infty} a_n$ converges conditionally then $\sum_{n=0}^{\infty} a_n^+$ and $\sum_{n=0}^{\infty} a_n^-$ both diverge. Show that if $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} a_n^-$ both diverge, but the sequence $a_n \to 0$ as $n \to \infty$ then there is a (conditionally) convergent rearrangement of $\sum_{n=0}^{\infty} a_n$.
- 3 (a) Suppose $\sum_{n=0}^{\infty} a_n$ converges to x, and furthermore, suppose that the partial sums $S_k = \sum_{n=0}^k a_n$ are such that $\sum_{n=0}^{\infty} |x S_k|$ converges. Prove that $\sum_{n=0}^{\infty} a_n$ converges absolutely. [Hint: use the triangle inequality $(|a + b| \leq |a| + |b|)$ and the comparison test.]

(b) If $\sum_{n=0}^{\infty} |x - S_k|$ diverges, (Where, as in (a), $\sum_{n=0}^{\infty} a_n = x$ and $S_k = \sum_{n=0}^{k} a_n$) must the convergence of $\sum_{n=0}^{\infty} a_n$ be conditional? Give a proof or a counterexample.

Optional questions

4 (a) If $\sum_{n=0}^{\infty} a_n$ converges and $\sum_{n=0}^{\infty} (a_n)^3$ converges, must $\sum_{n=0}^{\infty} (a_n)^5$ converge?

(b) If $\sum_{n=0}^{\infty} a_n$ converges and $\sum_{n=0}^{\infty} (a_n)^5$ converges, must $\sum_{n=0}^{\infty} (a_n)^3$ converge?