MATH 3090, Advanced Calculus I
 Fall 2006

Toby Kenney
Homework Sheet 3
Due in: Monday 2nd October, 11:30 AM
Please hand in solutions to questions 1-3. Question 4 is for interest only feel free to collaborate on it or ask me about it.

Compulsory questions

1 Define the sequence a_{n} recursively by $a_{0}=1$, and $a_{n}=\sum_{i=1}^{n} \frac{2 a_{n-i}}{(i+2)!}$ for $n \geqslant 1$. Given that $\sum_{n=0}^{\infty} a_{n}$ converges, show that $\sum_{n=0}^{\infty} a_{n}=\frac{1}{2(3-e)}$. [Hint: Take the Cauchy product with the series $\sum_{n=0}^{\infty} \frac{1}{(n+2)!}$. Now use the relation $a_{n}=\sum_{i=1}^{n} \frac{2 a_{n-i}}{(i+2)!}$ to simplify. The result should look similar to $\sum_{n=0}^{\infty} a_{n}$, and enable you to calculate it.]
(You might like to try proving that $\sum_{n=0}^{\infty} a_{n}$ converges. To do this, compare it to $C \alpha^{-n}$, where α satisfies $\frac{e^{\alpha}-1-\alpha}{\alpha^{2}}=1$ - assume the terms a_{i} for $i<n$ are all $<C \alpha^{-i}$ then use the recursive definition of a_{n}.)

2 For each of the following functions, calculate the pointwise limit, f, if it exists, and determine whether the convergence is uniform. If no domain is specified, the f_{n} are functions on the whole of \mathbb{R}.
(a) $f_{n}(x)= \begin{cases}1 & \text { if } x<0 \\ 1-n x & \text { if } 0 \leqslant x \leqslant \frac{1}{n} \\ 0 & \text { if } x>\frac{1}{n}\end{cases}$
(b) $f_{n}(x)=x^{n} e^{-n x^{2}}$
(c) $f_{n}(x)=\sin \left(\frac{x}{n}\right)$
(d) $f_{n}(x)=\sin (n x)$
(e) $f_{n}(x)=x^{n}$ for x in the interval $(0,1)$ (endpoints not included).
(f) $f_{n}(x)= \begin{cases}\frac{1}{n} & \text { if } x=\frac{p}{n^{q}} \text { for integers } p \text { and } q \\ 0 & \text { otherwise }\end{cases}$

3 Let f_{n} be a sequence of continuous functions converging uniformly to f (which is therefore continous). Suppose that $x_{n} \rightarrow x$ is a sequence of real numbers. Show that $f_{n}\left(x_{n}\right) \rightarrow f(x)$. (You may assume that if f is continuous and $a_{n} \rightarrow a$, then $f\left(a_{n}\right) \rightarrow f(a)$.) [Hint: for $\epsilon>0$, first choose N so that for $n>N,\left|f\left(x_{n}\right)-f(x)\right|<\frac{\epsilon}{2}$, then choose $M>N$ so that $\left|f_{M}-f\right|<\frac{\epsilon}{2}$. Do not choose M before N - it won't work!]

Optional questions

4 (a) Is there an equivalent result to the Bolzano-Weierstrass theorem for functions - i.e. given a sequence of functions $f_{n}: \mathbb{R} \rightarrow[0,1]$, must it have a uniformly convergent subsequence?
(b) Prove that if $\left(f_{n}\right)$ is a sequence of functions satisfying

$$
(\forall \epsilon>0)(\exists N)(\forall n, m \geqslant N)(\forall x)\left(\left|f_{n}(x)-f_{m}(x)\right|<\epsilon\right)
$$

then $\left(f_{n}\right)$ converges uniformly to some limit f.

