MATH 3090, Advanced Calculus I
 Fall 2006

Toby Kenney
Homework Sheet 4
Due in: Wednesday 11th October, 11:30 AM
Please hand in solutions to questions 1-3. Question 4 is for interest only feel free to collaborate on it or ask me about it.

Compulsory questions

1 Which of the following series of functions converge uniformly on the interval $(0,1)$? If they do not converge uniformly, is the limit continuous?
(a) $\sum_{n=0}^{\infty} \frac{x^{n}}{x+n}$ [You may assume that $\left(1-\frac{1}{N}\right)^{N} \geqslant \frac{1}{12}$ for $N \geqslant 2$.]
(b) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+x}$
(c) $\sum_{n=1}^{\infty} \frac{\cos (n(x+1))}{n}$ [Hint: multiply by $2 \sin \left(\frac{x+1}{2}\right)$. Recall that $2 \sin \alpha \cos \beta=$ $\sin (\beta+\alpha)-\sin (\beta-\alpha)$. There should then be cancellation between consecutive terms of the resulting series.]

2 (a) Suppose $\left(f_{n}\right)$ is a sequence of continuously differentiable functions on an interval $[a, b]$, converging pointwise to f. Suppose the derivatives f_{n}^{\prime} converge uniformly to g on $[a, b]$. (In Theorem 7.12 we showed that g is the derivative of f.) Prove that $f_{n} \rightarrow f$ uniformly on $[a, b]$. (You may assume that $\left|\int_{x}^{y} f(t) d t\right| \leqslant \int_{x}^{y}|f(t)| d t$.)
(b) What if instead of the finite interval $[a, b]$, the sequence f_{n} converges pointwise to f on the interval $[a, \infty)$, and $f_{n}^{\prime} \rightarrow g$ uniformly on $[a, \infty)$?

3 Find the radius of convergence of each of the following power series. Do they converge at the points where $|x|$ is equal to the radius of convergence?
(a) $\sum_{n=0}^{\infty} \frac{x^{n}}{n^{3}+2 n+3}$
(b) $\sum_{n=0}^{\infty} \frac{x^{\left(n^{2}\right)}}{n!}$
(c) $\sum_{n=0}^{\infty} \frac{x^{2 n}}{2^{n}(n+3)}$

Optional questions

4 If the coefficients a_{n} are all required to be integers, what are the possible values for the radius of convergence of $\sum_{n=0}^{\infty} a_{n}$?

