MATH 3090, Advanced Calculus I Fall 2006 Toby Kenney Homework Sheet 4 Due in: Wednesday 11th October, 11:30 AM

Please hand in solutions to questions 1-3. Question 4 is for interest only – feel free to collaborate on it or ask me about it.

Compulsory questions

- 1 Which of the following series of functions converge uniformly on the interval (0,1)? If they do not converge uniformly, is the limit continuous?
 - (a) $\sum_{n=0}^{\infty} \frac{x^n}{x+n}$ [You may assume that $\left(1-\frac{1}{N}\right)^N \ge \frac{1}{12}$ for $N \ge 2$.]
 - (b) $\sum_{n=1}^{\infty} \frac{1}{n^2+x}$

(c) $\sum_{n=1}^{\infty} \frac{\cos(n(x+1))}{n}$ [Hint: multiply by $2\sin\left(\frac{x+1}{2}\right)$. Recall that $2\sin\alpha\cos\beta = \sin(\beta+\alpha) - \sin(\beta-\alpha)$. There should then be cancellation between consecutive terms of the resulting series.]

2 (a) Suppose (f_n) is a sequence of continuously differentiable functions on an interval [a, b], converging pointwise to f. Suppose the derivatives f'_n converge uniformly to g on [a, b]. (In Theorem 7.12 we showed that g is the derivative of f.) Prove that $f_n \to f$ uniformly on [a, b]. (You may assume that $\left|\int_x^y f(t)dt\right| \leq \int_x^y |f(t)|dt$.)

(b) What if instead of the finite interval [a, b], the sequence f_n converges pointwise to f on the interval $[a, \infty)$, and $f'_n \to g$ uniformly on $[a, \infty)$?

- 3 Find the radius of convergence of each of the following power series. Do they converge at the points where |x| is equal to the radius of convergence?
 - (a) $\sum_{n=0}^{\infty} \frac{x^n}{n^3 + 2n + 3}$
 - (b) $\sum_{n=0}^{\infty} \frac{x^{\binom{n^2}}}{n!}$

 - (c) $\sum_{n=0}^{\infty} \frac{x^{2n}}{2^n(n+3)}$

Optional questions

4 If the coefficients a_n are all required to be integers, what are the possible values for the radius of convergence of $\sum_{n=0}^{\infty} a_n$?