MATH 3090, Advanced Calculus I
 Fall 2006

Toby Kenney
Homework Sheet 6
Due in: Monday 6th November, 11:30 AM
Please hand in solutions to questions 1-4. Question 5 is for interest only feel free to collaborate on it or ask me about it.

Compulsory questions

1 Show that $\cos n \theta=\sum_{j=0}^{\frac{n}{2}}(-1)^{j}\binom{n}{2 j} \cos ^{n-2 j} \theta \sin ^{2 j} \theta$ and that $\sin n \theta=$ $\sum_{j=0}^{\frac{n}{2}}(-1)^{j}\binom{n}{2 j+1} \cos ^{n-2 j-1} \theta \sin ^{2 j+1} \theta$. [Hint: use $e^{i \theta}=\cos \theta+$ $i \sin \theta$ and the binomial formula.]

2 Which non-zero complex numbers z have the property that $z+\frac{1}{z}$ is real?
3 Evaluate the following improper integrals
(a) $\int_{0}^{\infty} \int_{t}^{\infty} e^{-x^{2}} d x d t$
(b) $\int_{0}^{\infty} \frac{1-\cos t}{t^{2}} d t$ [Hint: you can calculate $\int_{0}^{\infty} \frac{\sin x t}{t} d t$ by the change of variable $u=x t$. Now integrate with respect to x.]

4 Do the following series converge? Justify your answers.
(a) $\sum_{n=1}^{\infty} \frac{1 \times 5 \times 9 \times \cdots \times(4 n+1)}{3 \times 7 \times 11 \times \cdots \times(4 n+3)}$
(b) $\sum_{n=1}^{\infty} \frac{(2 n)!^{4}}{(4 n)!(n!)^{4}}$

Optional questions

5 Define $I_{\alpha}(f)(x)=\frac{1}{\Gamma(\alpha)} \int_{0}^{x}(x-t)^{\alpha-1} f(t) d t . I_{\alpha}(f)$ is called the α th-order fractional integral of f.
(a) Show that the derivative of $I_{\alpha+1}(f)$ is $I_{\alpha}(f)$ for $\alpha>0$, and that the derivative of $I_{1}(f)$ is f.
(b) Show that $I_{\alpha}\left(I_{\beta}(f)\right)=I_{\alpha+\beta}(f)$ for any $\alpha, \beta>0$.

