MATH 3090, Advanced Calculus I Fall 2006 Toby Kenney Homework Sheet 6 Due in: Monday 6th November, 11:30 AM

Please hand in solutions to questions 1-4. Question 5 is for interest only – feel free to collaborate on it or ask me about it.

Compulsory questions

- 1 Show that $\cos n\theta = \sum_{j=0}^{\frac{n}{2}} (-1)^j \binom{n}{2j} \cos^{n-2j} \theta \sin^{2j} \theta$ and that $\sin n\theta = \sum_{j=0}^{\frac{n}{2}} (-1)^j \binom{n}{2j+1} \cos^{n-2j-1} \theta \sin^{2j+1} \theta$. [Hint: use $e^{i\theta} = \cos \theta + \frac{1}{2} \cos^{n-2j-1} \theta \sin^{2j+1} \theta$. $i\sin\theta$ and the binomial formula.]
- 2 Which non-zero complex numbers z have the property that $z + \frac{1}{z}$ is real?
- 3 Evaluate the following improper integrals
 - (a) $\int_0^\infty \int_t^\infty e^{-x^2} dx dt$

(b) $\int_0^\infty \frac{1-\cos t}{t^2} dt$ [Hint: you can calculate $\int_0^\infty \frac{\sin xt}{t} dt$ by the change of variable u = xt. Now integrate with respect to x.]

- 4 Do the following series converge? Justify your answers.
 - (a) $\sum_{n=1}^{\infty} \frac{1 \times 5 \times 9 \times \dots \times (4n+1)}{3 \times 7 \times 11 \times \dots \times (4n+3)}$ (b) $\sum_{n=1}^{\infty} \frac{(2n)!^4}{(4n)!(n!)^4}$

Optional questions

- 5 Define $I_{\alpha}(f)(x) = \frac{1}{\Gamma(\alpha)} \int_{0}^{x} (x-t)^{\alpha-1} f(t) dt$. $I_{\alpha}(f)$ is called the α th-order fractional integral of f.
 - (a) Show that the derivative of $I_{\alpha+1}(f)$ is $I_{\alpha}(f)$ for $\alpha > 0$, and that the derivative of $I_1(f)$ is f.
 - (b) Show that $I_{\alpha}(I_{\beta}(f)) = I_{\alpha+\beta}(f)$ for any $\alpha, \beta > 0$.