MATH 3090, Advanced Calculus I
 Fall 2006

Toby Kenney
Homework Sheet 7
Due in: Wednesday 15th November, 11:30 AM
Please hand in solutions to questions 1-3.

Compulsory questions

1 Find the Fourrier coefficients for the following functions. You may use either $f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}$ or $f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x+b_{n} \sin n x$. (a) $f(x)=\left\{\begin{array}{ll}-1 & \text { if }(2 n-1) \pi<x \leqslant 2 n \pi \\ 1 & \text { if } 2 n \pi<x \leqslant(2 n+1) \pi\end{array}\right.$ for any integer n.
(b) $f(x)=y^{3}$ where y is the value of $x-2 n \pi$ with smallest modulus, and $f((2 n+1) \pi)=0$ (so $f(x)=x^{3}$ for $-\pi<x<\pi$, and f is 2π-periodic).

2 (a) Show that $f(x)$ given by $f(x)=x^{4}$ on $[-\pi, \pi)$, and f is 2π-periodic, has Fourier series $f(x)=\frac{\pi^{4}}{10}+\sum_{n=1}^{\infty}(-1)^{n} 4\left(\frac{\pi^{2}}{n^{2}}-\frac{6}{n^{4}}\right) \cos n x$.
(b) Deduce that $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{4}}=-\frac{7 \pi^{4}}{720}$ (You may assume that $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}=$ $-\frac{\pi^{2}}{12}$).

3 Suppose $f(x)$ is a 2π-periodic function with Fourier series $f(x)=\frac{1}{2} a_{0}+$ $\sum_{n=0}^{\infty} a_{n} \cos ((4 n+1) x)$. Express the function $g(x)$ whose Fourier series is $g(x)=\frac{1}{2} a_{0} \cos x-\frac{1}{2} a_{0} \sin x+\sum_{n=0}^{\infty} a_{n} \cos ((4 n+2) x)$ in terms of $f(x)$. [Hint: $\cos ((4 n+2) x)=\cos x \cos ((4 n+1) x)-\sin x \sin ((4 n+1) x)$, and $\left.\sin ((4 n+1) x)=\cos (4 n+1)\left(x-\frac{\pi}{2}\right).\right]$

