MATH 3090, Advanced Calculus I
 Fall 2006

Toby Kenney
Homework Sheet 8
Due in: Monday 20th November, 11:30 AM
Please hand in solutions to questions 1-3.

Compulsory questions

1 Recall that the Fourier series for $f(x)=x$ when $-\pi \leqslant x<\pi$, and f 2π-periodic is $2 \sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin n x}{n}$. By integrating this 4 times, find the Fourier series for $g(x)=\frac{x^{5}}{120}-\frac{\pi^{2} x^{3}}{36}+\frac{7 \pi^{4} x}{360}$. [Remember to add the constant terms.]

2 Find the Fourier sine and cosine series for the following functions on the interval $[0, \pi]$.
(a) $f(x)=e^{x}$ [Hint: $\cos n x=\frac{e^{i n x}+e^{-i n x}}{2}, \sin n x=\frac{e^{i n x}-e^{-i n x}}{2 i}$.]
(b) $f(x)=\sin \left(x+\frac{\pi}{3}\right)$.

3 Define f by $f(x)=\sum_{n=1}^{\infty} \frac{\sin n x}{n}$. (This converges for all x by Dirichlet's test - see Corollary 6.27.)
(a) Show that the series converges uniformly on the intervals (δ, π) and $(-\pi,-\delta)$. [You may assume that the convergence in Dirichlet's test (Theorem 6.25) is uniform provided that there some bound C on the $\left|B_{n}\right|$ which works for all x in the interval.]

This means that f is a continuous function everywhere except perhaps at integer multiples of π. By subtracting off a multiple of the square wave $\left(h(x)=\left\{\begin{array}{ll}-1 & \text { if }(2 n-1) \pi<x \leqslant 2 n \pi \\ 1 & \text { if } 2 n \pi<x \leqslant(2 n+1) \pi\end{array}\right)\right.$ and a multiple of the sawtooth wave ($s(x)=x$ for $-\pi<x \leqslant \pi$, and 2π-periodic) from f, we get a function g that is continuous at all x.
(b) Show that g is not piecewise continuously differentiable. [Hint: if it were piecewise continuously differentiable, what would the Fourier coefficients have to be? (Recall that the square wave has Fourier Coefficients $b_{2 n+1}=\frac{4}{(2 n+1) \pi}$ and all other coefficients 0 , while the sawtooth wave has Fourier coefficients $b_{n}=\frac{(-1)^{n+1}}{n}$.) Use Bessel's inequality to show that these cannot be the Fourier coefficients of a piecewise continuous function.]

