MATH 3090, Advanced Calculus I
 Fall 2006

Toby Kenney
Midterm Examination

Wednesday 25th October: 18:00-19:30
 Model Answers

Answer all questions.

1 Which of the following series converge? For series which converge, is the convergence absolute? Justify your answers. (You may assume convergence of geometric series and $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ for $p>1$, and divergence of $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ for $p \leqslant 1$.)
(a) $\sum_{n=0}^{\infty} \frac{n+4}{2^{n}}$

The ratio of consecutive terms in the series is $\frac{(n+5) 2^{n+1}}{(n+4) 2^{n}}=\frac{n+5}{2(n+4)} \rightarrow \frac{1}{2}$ as $n \rightarrow \infty$. Therefore, by the ratio test, the series converges absolutely.
(b) $\sum_{n=1}^{\infty} \sqrt{n+\frac{1}{n}}-\sqrt{n}$

$$
\begin{aligned}
& \left(\sqrt{n+\frac{1}{n}}-\sqrt{n}\right)\left(\sqrt{n+\frac{1}{n}}+\sqrt{n}\right)=n+\frac{1}{n}-n=\frac{1}{n}, \text { so } \\
& \quad\left(\sqrt{n+\frac{1}{n}}-\sqrt{n}\right)=\frac{1}{n\left(\sqrt{n+\frac{1}{n}}+\sqrt{n}\right)} \leqslant \frac{1}{n^{\frac{3}{2}}}
\end{aligned}
$$

and all the terms in the series are non-negative, so the series converges absolutely by comparison to $\frac{1}{n^{\frac{3}{2}}}$.

2 Show that if $f_{n} \rightarrow f$ uniformly on the interval $[a, b]$, and all the f_{n} are continuous on $[a, b]$, then f is continuous on $[a, b]$.

We need to show that given $\epsilon>0$, and $x \in[a, b]$, there is a $\delta>0$, such that $(\forall y \in[a, b])(|y-x|<\delta \Rightarrow|f(y)-f(x)|<\epsilon)$. Since the $f_{n} \rightarrow f$ uniformly on $[a, b]$, we can find an N such that $(\forall x \in[a, b])\left(\left|f_{N}(x)-f(x)\right|<\frac{\epsilon}{3}\right)$ (indeed we can find N such that this holds for every $n \geqslant N$). Now, f_{N} is continuous, so we can choose a $\delta>0$, such that

$$
(\forall y \in[a, b])\left(|y-x|<\delta \Rightarrow\left|f_{N}(y)-f_{N}(x)\right|<\frac{\epsilon}{3}\right)
$$

Now if $|x-y|<\delta$ then

$$
\begin{aligned}
& |f(x)-f(y)|=\left|f(x)-f_{N}(x)+f_{N}(x)-f_{N}(y)+f_{N}(y)-f(y)\right| \leqslant \\
& \left|f(x)-f_{N}(x)\right|+\left|f_{N}(x)-f_{N}(y)\right|+\left|f_{N}(y)-f(y)\right|<\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon
\end{aligned}
$$

which is what we needed for f to be continuous.

3 Find the radius of convergence of each of the following power series. Do they converge at the points where $|x|$ is equal to the radius of convergence? Justify your answers.
(a) $\sum_{n=0}^{\infty} \frac{x^{n}}{2^{n^{2}}}$

The ratio of consecutive terms is $\frac{x^{n+1} 2^{(n+1)^{2}}}{x^{n} 2^{n^{2}}}=\frac{x}{2^{2 n+1}}$, but $\frac{x}{2^{2 n+1}} \rightarrow 0$ as $n \rightarrow \infty$, for any x, so the radius of convergence is infinite.
(b) $\sum_{n=0}^{\infty} \frac{x^{3 n+1}}{8^{n}(n+3)}$

The ratio of consecutive terms is $\frac{x^{3 n+4} 8^{n}(n+3)}{x^{3 n+1} 8^{n+1}(n+4)}=\frac{x^{3}(n+3)}{8(n+4)} \rightarrow \frac{x^{3}}{8}$ as $n \rightarrow$ ∞, and $\left|\frac{x^{3}}{8}\right|<1$ whenever $|x|<2$, and $\left|\frac{x^{3}}{8}\right|>1$ whenever $|x|>2$. Therefore, the radius of convergence is 2 . When $x=2$, the series diverges by comparison to $\sum_{n=1}^{\infty} \frac{1}{n}$. When $x=-2$, it converges by the alternating series test.

4 What is a Cauchy sequence? Prove that Cauchy sequences of real numbers are convergent. (You may assume the Bolzano-Weierstrass theorem.)

A Cauchy sequence is a sequence a_{n} that satisfies $(\forall \epsilon>0)(\exists N)(\forall m, n \geqslant$ $N)\left(\left|a_{n}-a_{m}\right|<\epsilon\right)$.

Theorem 1. Cauchy sequences of real numbers converge.
Proof. Let a_{n} be a Cauchy sequence. For $\epsilon=1$, we can pick an N so that for $m, n \geqslant N$ we have $\left|a_{m}-a_{n}\right|<1$. In particular, we have that $a_{N}-1<a_{n}<a_{N}+1$ for all $n>N$. Therefore, a Cauchy sequence is bounded. Thus, we can apply the Bolzano-Weierstrass theorem to deduce that a_{n} has a convergent subsequence $a_{n_{i}} \rightarrow a$. Now given $\epsilon>0$, we can choose I so that $(\forall i \geqslant I)\left(\left|a_{n_{i}}-a\right|<\frac{\epsilon}{2}\right)$. Also, we can choose N so that $(\forall m, n \geqslant N)\left(\left|a_{n}-a_{m}\right|<\frac{\epsilon}{2}\right)$. Therefore, if $M=\max \left(N, n_{I}\right)$, then for $n \geqslant M$ and $n_{i} \geqslant M,\left|a_{n}-a\right| \leqslant\left|a_{n}-a_{n_{i}}\right|+\left|a_{n_{i}}-a\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$, so $a_{n} \rightarrow a$.

5 Which of the following series of functions of x converge uniformly on the interval (0,1)? Justify your answers.
(a) $\sum_{n=0}^{\infty} f_{n}(x)$ where $f_{n}(x)= \begin{cases}1 & \text { if } x=\frac{1}{n} \\ 0 & \text { otherwise }\end{cases}$

Observe that the pointwise limit of this sum is just

$$
f(x)= \begin{cases}1 & \text { if } x=\frac{1}{n} \text { for some } n \\ 0 & \text { otherwise }\end{cases}
$$

Now the partial sum up to N is zero for all $x<\frac{1}{N}$, so in particular $f\left(\frac{1}{N+1}\right)-\sum_{n=0}^{N} f(n)=1$, so the series does not converge uniformly. (b) $\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}$

For all $x \in(0,1), \frac{x^{n}}{n^{2}}<\frac{1}{n^{2}}$, and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges, so $\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}$ converges uniformly on $(0,1)$ by the Weierstrass M-test with $M_{n}=\frac{1}{n^{2}}$

