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Model Solutions

1 Show that if the series
∑∞

n=0 an converges, where an > 0 for all n, then
so does

∑∞
n=0 a2

n.

Since
∑∞

n=0 an converges, we must have an → 0 as n →∞. Therefore, we
can choose an N such that (∀n > N)(an < 1). Now for n > N , a2

n < an,
so

∑∞
n=N a2

n converges by comparison to
∑∞

n=0 an.

2 Which of the following series of functions converge uniformly on the in-
terval (0,1)? Justify your answers.

(a)
∑∞

n=1 fn(x) where fn(x) =
{

1
n2 if x < 1

n
0 if x > 1

n

For every n, and every x, fn(x) 6 1
n2 , so

∑∞
n=0 fn(x) converges uniformly

by the Weierstrass M-test with Mn = 1
n2 .

(b)
∑∞

n=1

x+ 1
n2

(1+x)n2 [Hint: substitute y = n2x, and expand the denominator]

If we let y = n2x, then the fraction is
y+1
n2

(1+ y

n2 )n2 . However,

(
1 +

y

n2

)n2

= 1 + n2 y

n2
+

(
n2

2

) ( y

n2

)2

+ . . . > 1 + y

so
y+1
n2

(1+ y

n2 )n2 6 1
n2 . Therefore, the series converges uniformly by the Weier-

strass M-test with Mn = 1
n2 .

3 Find the radius of convergence of each of the following power series. Do
they converge at the points where |x| is equal to the radius of convergence?

(a)
∑∞

n=0
xn

32n+1

The ratio of consecutive terms is xn+132n+1

xn32n+3 = x
9 . Therefore, for |x| < 9,

the series converges by the ratio test, while for |x| > 9, it diverges by the
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ratio test. Thus, the radius of convergence is 9. When |x| = 9, the series
diverges, because all the terms have modulus 1

3 , so they do not converge
to 0.

(b)
∑∞

n=1
nnxn

n! (You may assume that
(
1 + 1

n

)n → e as n →∞.)

The ratio of consecutive terms in this series is (n+1)n+1xn+1n!
(n+1)!nnxn = (n+1)n+1x

(n+1)nn =(
1 + 1

n

)n
x. As n → ∞, this converges to ex, so the series converges if

ex < 1, and diverges if ex > 1. The radius of convergence is therefore 1
e .

I should have been more careful stating this question – it wasn’t reasonable
to expect you to determine whether the series converges for x = ± 1

e . We
will see shortly when we cover Stirling’s formula that the series diverges for
x = 1

e and converges when x = − 1
e by the alternating series test. (In fact

we can show the latter by observing that
(
1 + 1

n

)n
< e for all n – when we

expand the bracket the terms we get are all less than the corresponding
terms in the Taylor series for e.)

4 State and prove the Bolzano-Weierstrass theorem.

Bolzano-Weierstrass Theorem: Any bounded sequence of real num-
bers has a convergent subsequence.

Proof: Let an be a sequence of real numbers. We will show that it has
a monotone subsequence, then if an is bounded, this subsequence will be
convergent by the monotone convergence axiom.

To show that an has a monotone subsequence, we will call a natural num-
ber n far-seeing if (∀m > n)(an > am). Now either there are infinitely
many far-seeing n: in which case, the subsequence ani , where the ni are
the far-seeing n, is a decreasing subsequence; or there are only finitely
many far-seeing n, in which case, there is a largest far-seeing N , so for
any n > N , there is an m > n with an < am. We can therefore choose
n1 = N +1, and inductively define ni+1 to be the first number larger than
ni to satisfy ani < ani+1 . The ani then form an increasing subsequence of
the an. Therefore, in either case, we have a monotone subsequence.

5 Which of the following series converge? For series which converge, is
the convergence absolute? Justify your answers. (You may assume con-
vergence of geometric series and

∑∞
n=1

1
np for p > 1, and divergence of∑∞

n=1
1

np for p 6 1.)

(a)
∑∞

n=1(−1)n n2+2
3n2+4n+5

2



As n → ∞, n2+2
3n2+4n+5 →

1
3 , so the terms do not converge to zero. There-

fore, the sum cannot converge.

(b)
∑∞

n=1

π
2−arctan n

n

solution 1(integral test):
π
2−arctan x

x is a decreasing function of x for
x > 0, and it converges to 0 as x → ∞. Therefore, we can apply
the integral test, to say that

∑∞
n=1

π
2−arctan n

n converges if and only if∫∞
1

π
2−arctan x

x dx converges. We perform the substitution x = tan θ, to
get:

∫ π
2

arctan 1

π
2−θ

tan θ cos2 θ dθ But tan θ cos2 θ = sin θ cos θ, and
π
2−θ

cos θ converges
to 1 as θ → π

2 . Therefore, the integral is bounded, so it converges. There-
fore,

∑∞
n=1

π
2−arctan n

n converges.

solution 2: tan
(

π
2 − θ

)
= 1

tan θ , so π
2 −arctann = arctan

(
1
n

)
, so the sum

is
∑∞

n=1

arctan( 1
n )

n , and for n > 1, arctan
(

1
n

)
6 1

n . Thus,
arctan( 1

n )
n 6 1

n2 ,
so the series converges by comparison to

∑∞
n=1

1
n2 .

6 Show that if fn → f uniformly on the interval [a, b], and all the fn are
continuous on [a, b], then f is continuous on [a, b]. If the fn are all differ-
entiable at some x ∈ [a, b], must f be differentiable at x? Give a proof or
a counterexample.

We need to show that given ε > 0, and x ∈ [a, b], there is a δ > 0, such that
(∀y ∈ [a, b])(|y− x| < δ ⇒ |f(y)− f(x)| < ε). Since the fn → f uniformly
on [a, b], we can find an N such that (∀x ∈ [a, b])(|fN (x) − f(x)| < ε

3 )
(indeed we can find N such that this holds for every n > N). Now, fN is
continuous, so we can choose a δ > 0, such that

(∀y ∈ [a, b])(|y − x| < δ ⇒ |fN (y)− fN (x)| < ε

3
)

Now if |x− y| < δ then

|f(x)− f(y)| = |f(x)− fN (x) + fN (x)− fN (y) + fN (y)− f(y)| 6

|f(x)− fN (x)|+ |fN (x)− fN (y)|+ |fN (y)− f(y)| < ε

3
+

ε

3
+

ε

3
= ε

which is what we needed for f to be continuous.

f does not have to be differentiable at x ∈ [a, b] even if all the fn are differ-

entiable there. For example, if a = −1, b = 1 and fn(x) =

 −x if x < − 1
n

1
n if − 1

n 6 x 6 1
n

x if x > 1
n

then fn converges uniformly to f(x) = |x|, but every fn is differentiable
at 0, while f is not differentiable at 0.
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