MATH 3090, Advanced Calculus I
 Fall 2006

Toby Kenney
Mock Midterm Examination
Model Solutions
1 Show that if the series $\sum_{n=0}^{\infty} a_{n}$ converges, where $a_{n} \geqslant 0$ for all n, then so does $\sum_{n=0}^{\infty} a_{n}^{2}$.

Since $\sum_{n=0}^{\infty} a_{n}$ converges, we must have $a_{n} \rightarrow 0$ as $n \rightarrow \infty$. Therefore, we can choose an N such that $(\forall n \geqslant N)\left(a_{n}<1\right)$. Now for $n \geqslant N, a_{n}^{2}<a_{n}$, so $\sum_{n=N}^{\infty} a_{n}^{2}$ converges by comparison to $\sum_{n=0}^{\infty} a_{n}$.

2 Which of the following series of functions converge uniformly on the interval (0,1)? Justify your answers.
(a) $\sum_{n=1}^{\infty} f_{n}(x)$ where $f_{n}(x)= \begin{cases}\frac{1}{n^{2}} & \text { if } x<\frac{1}{n} \\ 0 & \text { if } x \geqslant \frac{1}{n}\end{cases}$

For every n, and every $x, f_{n}(x) \leqslant \frac{1}{n^{2}}$, so $\sum_{n=0}^{\infty} f_{n}(x)$ converges uniformly by the Weierstrass M-test with $M_{n}=\frac{1}{n^{2}}$.
(b) $\sum_{n=1}^{\infty} \frac{x+\frac{1}{n^{2}}}{(1+x)^{n^{2}}}$ [Hint: substitute $y=n^{2} x$, and expand the denominator] If we let $y=n^{2} x$, then the fraction is $\frac{\frac{y+1}{n^{2}}}{\left(1+\frac{y}{n^{2}}\right)^{n^{2}}}$. However,

$$
\left(1+\frac{y}{n^{2}}\right)^{n^{2}}=1+n^{2} \frac{y}{n^{2}}+\binom{n^{2}}{2}\left(\frac{y}{n^{2}}\right)^{2}+\ldots \geqslant 1+y
$$

so $\frac{\frac{y+1}{n^{2}}}{\left(1+\frac{y}{n^{2}}\right)^{n^{2}}} \leqslant \frac{1}{n^{2}}$. Therefore, the series converges uniformly by the Weierstrass M-test with $M_{n}=\frac{1}{n^{2}}$.

3 Find the radius of convergence of each of the following power series. Do they converge at the points where $|x|$ is equal to the radius of convergence?
(a) $\sum_{n=0}^{\infty} \frac{x^{n}}{3^{2 n+1}}$

The ratio of consecutive terms is $\frac{x^{n+1} 3^{2 n+1}}{x^{n} 3^{2 n+3}}=\frac{x}{9}$. Therefore, for $|x|<9$, the series converges by the ratio test, while for $|x|>9$, it diverges by the
ratio test. Thus, the radius of convergence is 9 . When $|x|=9$, the series diverges, because all the terms have modulus $\frac{1}{3}$, so they do not converge to 0 .
(b) $\sum_{n=1}^{\infty} \frac{n^{n} x^{n}}{n!}$ (You may assume that $\left(1+\frac{1}{n}\right)^{n} \rightarrow e$ as $n \rightarrow \infty$.)

The ratio of consecutive terms in this series is $\frac{(n+1)^{n+1} x^{n+1} n!}{(n+1)!n^{n} x^{n}}=\frac{(n+1)^{n+1} x}{(n+1) n^{n}}=$ $\left(1+\frac{1}{n}\right)^{n} x$. As $n \rightarrow \infty$, this converges to $e x$, so the series converges if $e x<1$, and diverges if $e x>1$. The radius of convergence is therefore $\frac{1}{e}$.
I should have been more careful stating this question - it wasn't reasonable to expect you to determine whether the series converges for $x= \pm \frac{1}{e}$. We will see shortly when we cover Stirling's formula that the series diverges for $x=\frac{1}{e}$ and converges when $x=-\frac{1}{e}$ by the alternating series test. (In fact we can show the latter by observing that $\left(1+\frac{1}{n}\right)^{n}<e$ for all $n-$ when we expand the bracket the terms we get are all less than the corresponding terms in the Taylor series for e.)

4 State and prove the Bolzano-Weierstrass theorem.

Bolzano-Weierstrass Theorem: Any bounded sequence of real numbers has a convergent subsequence.

Proof: Let a_{n} be a sequence of real numbers. We will show that it has a monotone subsequence, then if a_{n} is bounded, this subsequence will be convergent by the monotone convergence axiom.
To show that a_{n} has a monotone subsequence, we will call a natural number n far-seeing if $(\forall m>n)\left(a_{n} \geqslant a_{m}\right)$. Now either there are infinitely many far-seeing n : in which case, the subsequence $a_{n_{i}}$, where the n_{i} are the far-seeing n, is a decreasing subsequence; or there are only finitely many far-seeing n, in which case, there is a largest far-seeing N, so for any $n>N$, there is an $m>n$ with $a_{n}<a_{m}$. We can therefore choose $n_{1}=N+1$, and inductively define n_{i+1} to be the first number larger than n_{i} to satisfy $a_{n_{i}}<a_{n_{i+1}}$. The $a_{n_{i}}$ then form an increasing subsequence of the a_{n}. Therefore, in either case, we have a monotone subsequence.

5 Which of the following series converge? For series which converge, is the convergence absolute? Justify your answers. (You may assume convergence of geometric series and $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ for $p>1$, and divergence of $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ for $p \leqslant 1$.)
(a) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}+2}{3 n^{2}+4 n+5}$

As $n \rightarrow \infty, \frac{n^{2}+2}{3 n^{2}+4 n+5} \rightarrow \frac{1}{3}$, so the terms do not converge to zero. Therefore, the sum cannot converge.
(b) $\sum_{n=1}^{\infty} \frac{\frac{\pi}{2}-\arctan n}{n}$
solution 1(integral test): $\frac{\frac{\pi}{2}-\arctan x}{x}$ is a decreasing function of x for $x>0$, and it converges to 0 as $x \rightarrow \infty$. Therefore, we can apply the integral test, to say that $\sum_{n=1}^{\infty} \frac{\frac{\pi}{2}-\arctan n}{n}$ converges if and only if $\int_{1}^{\infty} \frac{\frac{\pi}{2}-\arctan x}{x} d x$ converges. We perform the substitution $x=\tan \theta$, to get: $\int_{\arctan 1}^{\frac{\pi}{2}} \frac{\frac{\pi}{2}-\theta}{\tan \theta \cos ^{2} \theta} d \theta$ But $\tan \theta \cos ^{2} \theta=\sin \theta \cos \theta$, and $\frac{\frac{\pi}{2}-\theta}{\cos \theta}$ converges to 1 as $\theta \rightarrow \frac{\pi}{2}$. Therefore, the integral is bounded, so it converges. Therefore, $\sum_{n=1}^{\infty} \frac{\frac{\pi}{2}-\arctan n}{n}$ converges.
solution 2: $\tan \left(\frac{\pi}{2}-\theta\right)=\frac{1}{\tan \theta}$, so $\frac{\pi}{2}-\arctan n=\arctan \left(\frac{1}{n}\right)$, so the sum is $\sum_{n=1}^{\infty} \frac{\arctan \left(\frac{1}{n}\right)}{n}$, and for $n \geqslant 1$, $\arctan \left(\frac{1}{n}\right) \leqslant \frac{1}{n}$. Thus, $\frac{\arctan \left(\frac{1}{n}\right)}{n} \leqslant \frac{1}{n^{2}}$, so the series converges by comparison to $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.

6 Show that if $f_{n} \rightarrow f$ uniformly on the interval $[a, b]$, and all the f_{n} are continuous on $[a, b]$, then f is continuous on $[a, b]$. If the f_{n} are all differentiable at some $x \in[a, b]$, must f be differentiable at x ? Give a proof or a counterexample.

We need to show that given $\epsilon>0$, and $x \in[a, b]$, there is a $\delta>0$, such that $(\forall y \in[a, b])(|y-x|<\delta \Rightarrow|f(y)-f(x)|<\epsilon)$. Since the $f_{n} \rightarrow f$ uniformly on $[a, b]$, we can find an N such that $(\forall x \in[a, b])\left(\left|f_{N}(x)-f(x)\right|<\frac{\epsilon}{3}\right)$ (indeed we can find N such that this holds for every $n \geqslant N$). Now, f_{N} is continuous, so we can choose a $\delta>0$, such that

$$
(\forall y \in[a, b])\left(|y-x|<\delta \Rightarrow\left|f_{N}(y)-f_{N}(x)\right|<\frac{\epsilon}{3}\right)
$$

Now if $|x-y|<\delta$ then

$$
\begin{aligned}
& |f(x)-f(y)|=\left|f(x)-f_{N}(x)+f_{N}(x)-f_{N}(y)+f_{N}(y)-f(y)\right| \leqslant \\
& \left|f(x)-f_{N}(x)\right|+\left|f_{N}(x)-f_{N}(y)\right|+\left|f_{N}(y)-f(y)\right|<\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon
\end{aligned}
$$

which is what we needed for f to be continuous.
f does not have to be differentiable at $x \in[a, b]$ even if all the f_{n} are differentiable there. For example, if $a=-1, b=1$ and $f_{n}(x)= \begin{cases}-x & \text { if } x<-\frac{1}{n} \\ \frac{1}{n} & \text { if }-\frac{1}{n} \leqslant x \leqslant \frac{1}{n} \\ x & \text { if } x>\frac{1}{n}\end{cases}$ then f_{n} converges uniformly to $f(x)=|x|$, but every f_{n} is differentiable at 0 , while f is not differentiable at 0 .

