MATH 3090, Advanced Calculus I
 Fall 2006
 Toby Kenney
 Homework Sheet 1
 Model Solutions

Compulsory questions

1 Prove from the definition of convergence that the sequence $1,2,3, \ldots$ does not converge to any real number x.

We need to show that for any x,

$$
(\exists \epsilon>0)(\forall N)(\exists n \geqslant N)\left(\left|a_{n}-x\right| \geqslant \epsilon\right)
$$

This means we can choose the ϵ. In this case any $\epsilon>0$ works. We will take $\epsilon=1$. Now there is some natural number $k>x$. If $n \geqslant k+1$, then $\left|a_{n}-x\right| \geqslant\left|a_{n}-k\right| \geqslant 1$. So for any N, we can take $n=N+k+1$. Then $n \geqslant N$, and $\left|a_{n}-x\right| \geqslant \epsilon$.

2 (a) Show that if $\left(x_{n}\right)$ is a sequence, such that every subsequence $\left(x_{n_{i}}\right)$ has a subsequence which converges to x, then $x_{n} \rightarrow x$. [Hint: Suppose x_{n} does not converge to x. Then there is some $\epsilon>0$ such that for every N, there is $n>N$ with $\left|x_{n}-x\right|>\epsilon$. Construct a sequence of these x_{n}. does it have a subsequence which converges to x ?]

Suppose x_{n} does not converge to x. Then there is some $\epsilon>0$ such that for every N, there is $n>N$ with $\left|x_{n}-x\right|>\epsilon$. Choose n_{0} so that $\left|x_{n_{0}}-x\right|>\epsilon$. Choose $n_{1} \geqslant n_{0}+1$ so that $\left|x_{n_{1}}-x\right|>\epsilon$. Continue this process to get a subsequence $x_{n_{0}}, x_{n_{1}}, x_{n_{2}}, \ldots$ where each $x_{n_{i}}$ satisfies $\left|x_{n_{i}}-x\right| \geqslant \epsilon$. Any subsequence of the $x_{n_{i}}$ cannot converge to x, since it has no N such that for all $k \geqslant N,\left|x_{n_{i_{k}}}-x\right|<\epsilon$. However, this contradicts our initial assumption that any subsequence of x_{n} has a subsequence that converges to x. Therefore our supposition that x_{n} does not converge to x must be impossible, i.e. x_{n} must converge to x.
(b) Deduce that if y_{n} is a bounded sequence that does not converge, then it has (at least) two convergent subsequences which converge to different limits. [Hint: If x_{n} does not converge to x, then as in part (a), we can construct a subsequence that has no subsequence converging to x. Use Bolzano-Weierstrass on this subsequence.]
y_{n} has a convergent subsequence by the Bolzano-Weierstrass Theorem. Let $y_{n_{i}}$ be a convergent subsequence, and let its limit be $x . y_{n}$ does not converge to x, since it does not converge. Therefore, it cannot be the case
that every subsequence $y_{m_{i}}$ has a subsequence that converges to x, since by (a), this would force y_{n} to converge to x. Pick a subsequence $y_{m_{i}}$ that has no subsequence converging to $x . y_{m_{i}}$ is a bounded sequence (it has the same bounds as y_{n}) so by the Bolzano-Weierstrass theorem, it has a convergent subsequence $y_{m_{i_{j}}}$. The limit of $y_{m_{i_{j}}}$ cannot be x, so it must be some $y \neq x$. But $y_{m_{i_{j}}}$ is a subsequence of y_{n} that converges to y, and we already found a subsequence converging to x.

3 Which of the following series converge and which diverge? Justify your answers. (You may assume convergence and divergence of the series covered in lectures.)
(a) $\sum_{n=0}^{\infty} \frac{3^{n}}{n!}$

ratio test:

If $a_{n}=\frac{3^{n}}{n!}$, then $\frac{a_{n+1}}{a_{n}}=\frac{n!3^{n+1}}{(n+1)!3^{n}}=\frac{3}{n+1} \rightarrow 0$ asn $\rightarrow \infty$
Therefore, by the ratio test, $\sum_{n=0}^{\infty} \frac{3^{n}}{n!}$ converges.

root test:

$n!=\left((1 \times n) \times(2 \times(n-1)) \times \ldots \times\left(\frac{n}{2} \times \frac{n+2}{2}\right)\right)$ (If n is odd, the last term in the product is just $\frac{n+1}{2}$). Each term in the product is at least n (except the term $\frac{n+1}{2}$ for n odd) so $n!\geqslant n^{\frac{n}{2}}$. Therefore, $\left(\frac{3^{n}}{n!}\right)^{\frac{1}{n}} \leqslant \frac{3}{\sqrt{n}} \rightarrow 0$, so by the root test, $\sum_{n=0}^{\infty} \frac{3^{n}}{n!}$ converges.
(b) $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$

comparison test:

For $n \geqslant 2, \frac{n!}{n^{n}}=\frac{1 \times 2 \times \ldots}{n \times n \times \ldots} \leqslant \frac{2}{n^{2}}$, so $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$ converges by comparison to $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.

ratio test:

If $a_{n}=\frac{n!}{n^{n}}$, then $\frac{a_{n+1}}{a_{n}}=\frac{(n+1)!n^{n}}{n!(n+1)^{n+1}}=\left(\frac{n}{n+1}\right)^{n}$. Now, $\left(\frac{n+1}{n}\right)^{n}=\left(1+\frac{1}{n}\right)^{n}=$ $\left(1+\frac{n}{n}+\frac{n(n-1)}{2 n^{2}}+\frac{n(n-1)(n-2)}{3!n^{3}}+\ldots+\frac{n!}{n!n^{n}}\right)$ As $n \rightarrow \infty$, the first few terms of the expansion tend to $1+1+\frac{1}{2}+\frac{1}{3!}+\ldots$, and the last terms are very small, so the limit of $\left(1+\frac{1}{n}\right)^{n}$ is e. Therefore, $\left(\frac{n}{n+1}\right)^{n} \rightarrow \frac{1}{e}$ as $n \rightarrow \infty$. As $\frac{1}{e}<1, \sum_{n=1}^{\infty} \frac{n!}{n^{n}}$ converges.
root test:
As above, $n!=\left((1 \times n) \times(2 \times(n-1)) \times \ldots \times\left(\frac{n}{2} \times \frac{n+2}{2}\right)\right)$. All terms are at most $\left(\frac{n+1}{2}\right)^{2}$, so $(n!)^{\frac{1}{n}} \leqslant \frac{n+1}{2}$. Therefore $\left(\frac{n!}{n^{n}}\right)^{\frac{1}{n}} \leqslant \frac{n+1}{2 n} \rightarrow \frac{1}{2}<1$, so $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$ converges by the root test.
(c) $\sum_{n=1}^{\infty} \sqrt{n^{2}+1}-n$ [Hint: $x^{2}-y^{2}=(x+y)(x-y)$]

comparison test:

$\left(\sqrt{n^{2}+1}-n\right)\left(\sqrt{n^{2}+1}+n\right)=\left(n^{2}+1-n^{2}\right)=1$. Therefore, $\sqrt{n^{2}+1}-n=$ $\frac{1}{\sqrt{n^{2}+1}+n}$, but $\sqrt{n^{2}+1}+n \leqslant 3 n$ for $n \geqslant 1$, so $\sqrt{n^{2}+1}-n \geqslant \frac{1}{3 n}$, so $\sum_{n=1}^{\infty} \sqrt{n^{2}+1}-n$ diverges by comparison to $\sum_{n=1}^{\infty} \frac{1}{3 n}$.

integral test:

If $f(x)=\sqrt{x^{2}+1}-x$, then $f^{\prime}(x)=\frac{2 x}{2 \sqrt{x^{2}+1}}-1<0$ for $x>0$, so f is a decreasing function of x, so the integral test can be applied.
Making the substitution $x=\sinh y$, we have $\int_{0}^{N} \sqrt{x^{2}+1} d x=\int_{0}^{\sinh ^{-1} N} \cosh ^{2} y d y$.
Using the identity $\cosh ^{2} y=\frac{1+\cosh (2 y)}{2}$, this is $\int_{0}^{\sinh ^{-1} N} \frac{1+\cosh (2 y)}{2} d y=$ $\left[\frac{y}{2}+\frac{\sinh (2 y)}{4}\right]_{0}^{\sinh ^{-1} N}$. Using $\sinh (2 y)=2 \sinh (y) \cosh (y)$, this is $\frac{\sinh ^{-1} N+N \sqrt{N^{2}+1}}{2}$.
Therefore, $\int_{0}^{N}\left(\sqrt{x^{2}+1}-x\right) d x \geqslant \frac{\sinh ^{-1} N}{2}$ which tends to ∞, so by the integral test, $\sum_{n=1}^{\infty} \sqrt{n^{2}+1}-n$ diverges.
(d) $\sum_{n=2}^{\infty} \frac{1}{n \log n}$ [Hint: to integrate $\frac{1}{x \log x}$, you may find the substitution $u=\log x$ helpful.]

integral test:

Note that $f(x)=x \log x$ is an increasing function of x, so $g(x)=\frac{1}{x \log x}$ is a decreasing function of x. Therefore, $\sum_{n=2}^{\infty} \frac{1}{n \log n}$ converges if and only if $\int_{2}^{N} \frac{1}{x \log x} d x$ converges as $n \rightarrow \infty$.
Let $u=\log x . \quad \frac{d u}{d x}=\frac{1}{x}$. Therefore, $\int_{2}^{N} \frac{1}{x \log x} d x=\int_{\log 2}^{\log N} \frac{1}{u e^{u}}\left(e^{u}\right) d u=$ $[\log u]_{\log 2}^{\log N}$. But $\log (\log N) \rightarrow \infty$ as $N \rightarrow \infty$, so $\sum_{n=2}^{\infty} \frac{1}{n \log n}$ diverges.

comparison test:

The terms from $n=2^{k}+1$ to $n=2^{k+1}$ are all at least $\frac{1}{2^{k+1}(k+1) \log 2}$, and there are 2^{k} values of n between $2^{k}+1$ and 2^{k+1} inclusive. Therefore, $\sum_{n=2^{k}+1}^{2^{k+1}} \frac{1}{n \log n} \geqslant \frac{2^{k}}{2^{k+1}(k+1) \log 2}=\frac{1}{(2 \log 2)(k+1)}$. Thus $\sum_{n=2}^{2^{k+1}} \frac{1}{n \log n} \geqslant$ $\sum_{m=1}^{k} \frac{1}{(2 \log 2)(m+1)}$, which diverges as $k \rightarrow \infty$. Therefore, $\sum_{n=2}^{2^{k+1}} \frac{1}{n \log n}$ also diverges.

