
MATH 3090, Advanced Calculus I
Fall 2006

Toby Kenney
Homework Sheet 1
Model Solutions

Compulsory questions

1 Prove from the definition of convergence that the sequence 1, 2, 3, . . . does
not converge to any real number x.

We need to show that for any x,

(∃ε > 0)(∀N)(∃n > N)(|an − x| > ε)

This means we can choose the ε. In this case any ε > 0 works. We will
take ε = 1. Now there is some natural number k > x. If n > k + 1, then
|an − x| > |an − k| > 1. So for any N , we can take n = N + k + 1. Then
n > N , and |an − x| > ε.

2 (a) Show that if (xn) is a sequence, such that every subsequence (xni
) has

a subsequence which converges to x, then xn → x. [Hint: Suppose xn does
not converge to x. Then there is some ε > 0 such that for every N , there
is n > N with |xn − x| > ε. Construct a sequence of these xn. does it
have a subsequence which converges to x?]

Suppose xn does not converge to x. Then there is some ε > 0 such that for
every N , there is n > N with |xn−x| > ε. Choose n0 so that |xn0−x| > ε.
Choose n1 > n0 + 1 so that |xn1 − x| > ε. Continue this process to get
a subsequence xn0 , xn1 , xn2 , . . . where each xni

satisfies |xni
− x| > ε.

Any subsequence of the xni cannot converge to x, since it has no N such
that for all k > N , |xnik

− x| < ε. However, this contradicts our initial
assumption that any subsequence of xn has a subsequence that converges
to x. Therefore our supposition that xn does not converge to x must be
impossible, i.e. xn must converge to x.

(b) Deduce that if yn is a bounded sequence that does not converge, then
it has (at least) two convergent subsequences which converge to different
limits. [Hint: If xn does not converge to x, then as in part (a), we can
construct a subsequence that has no subsequence converging to x. Use
Bolzano-Weierstrass on this subsequence.]

yn has a convergent subsequence by the Bolzano-Weierstrass Theorem.
Let yni

be a convergent subsequence, and let its limit be x. yn does not
converge to x, since it does not converge. Therefore, it cannot be the case
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that every subsequence ymi
has a subsequence that converges to x, since

by (a), this would force yn to converge to x. Pick a subsequence ymi
that

has no subsequence converging to x. ymi
is a bounded sequence (it has

the same bounds as yn) so by the Bolzano-Weierstrass theorem, it has a
convergent subsequence ymij

. The limit of ymij
cannot be x, so it must

be some y 6= x. But ymij
is a subsequence of yn that converges to y, and

we already found a subsequence converging to x.

3 Which of the following series converge and which diverge? Justify your an-
swers. (You may assume convergence and divergence of the series covered
in lectures.)

(a)
∑∞

n=0
3n

n!

ratio test:

If an = 3n

n! , then an+1
an

= n!3n+1

(n+1)!3n = 3
n+1 → 0asn →∞

Therefore, by the ratio test,
∑∞

n=0
3n

n! converges.

root test:

n! =
(
(1× n)× (2× (n− 1))× . . .× (n

2 ×
n+2

2 )
)

(If n is odd, the last term
in the product is just n+1

2 ). Each term in the product is at least n (except

the term n+1
2 for n odd) so n! > n

n
2 . Therefore,

(
3n

n!

) 1
n 6 3√

n
→ 0, so by

the root test,
∑∞

n=0
3n

n! converges.

(b)
∑∞

n=1
n!
nn

comparison test:

For n > 2, n!
nn = 1×2×...

n×n×... 6 2
n2 , so

∑∞
n=1

n!
nn converges by comparison to∑∞

n=1
1

n2 .

ratio test:

If an = n!
nn , then an+1

an
= (n+1)!nn

n!(n+1)n+1 =
(

n
n+1

)n

. Now,
(

n+1
n

)n =
(
1 + 1

n

)n =(
1 + n

n + n(n−1)
2n2 + n(n−1)(n−2)

3!n3 + . . . + n!
n!nn

)
As n → ∞, the first few

terms of the expansion tend to 1 + 1 + 1
2 + 1

3! + . . ., and the last terms

are very small, so the limit of
(
1 + 1

n

)n is e. Therefore,
(

n
n+1

)n

→ 1
e as

n →∞. As 1
e < 1,

∑∞
n=1

n!
nn converges.
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root test:

As above, n! =
(
(1× n)× (2× (n− 1))× . . .× (n

2 ×
n+2

2 )
)
. All terms are

at most
(

n+1
2

)2, so (n!)
1
n 6 n+1

2 . Therefore
(

n!
nn

) 1
n 6 n+1

2n → 1
2 < 1, so∑∞

n=1
n!
nn converges by the root test.

(c)
∑∞

n=1

√
n2 + 1− n [Hint: x2 − y2 = (x + y)(x− y)]

comparison test:

(
√

n2 + 1−n)(
√

n2 + 1+n) = (n2+1−n2) = 1. Therefore,
√

n2 + 1−n =
1√

n2+1+n
, but

√
n2 + 1 + n 6 3n for n > 1, so

√
n2 + 1 − n > 1

3n , so∑∞
n=1

√
n2 + 1− n diverges by comparison to

∑∞
n=1

1
3n .

integral test:

If f(x) =
√

x2 + 1 − x, then f ′(x) = 2x
2
√

x2+1
− 1 < 0 for x > 0, so f is a

decreasing function of x, so the integral test can be applied.

Making the substitution x = sinh y, we have
∫ N

0

√
x2 + 1dx =

∫ sinh−1 N

0
cosh2 ydy.

Using the identity cosh2 y = 1+cosh(2y)
2 , this is

∫ sinh−1 N

0
1+cosh(2y)

2 dy =[
y
2 + sinh(2y)

4

]sinh−1 N

0
. Using sinh(2y) = 2 sinh(y) cosh(y), this is sinh−1 N+N

√
N2+1

2 .

Therefore,
∫ N

0
(
√

x2 + 1 − x)dx > sinh−1 N
2 which tends to ∞, so by the

integral test,
∑∞

n=1

√
n2 + 1− n diverges.

(d)
∑∞

n=2
1

n log n [Hint: to integrate 1
x log x , you may find the substitution

u = log x helpful.]

integral test:

Note that f(x) = x log x is an increasing function of x, so g(x) = 1
x log x is

a decreasing function of x. Therefore,
∑∞

n=2
1

n log n converges if and only

if
∫ N

2
1

x log xdx converges as n →∞.

Let u = logx. du
dx = 1

x . Therefore,
∫ N

2
1

x log xdx =
∫ log N

log 2
1

ueu (eu)du =

[log u]log N
log 2 . But log(log N) →∞ as N →∞, so

∑∞
n=2

1
n log n diverges.

comparison test:

The terms from n = 2k + 1 to n = 2k+1 are all at least 1
2k+1(k+1) log 2

, and
there are 2k values of n between 2k + 1 and 2k+1 inclusive. Therefore,∑2k+1

n=2k+1
1

n log n > 2k

2k+1(k+1) log 2
= 1

(2 log 2)(k+1) . Thus
∑2k+1

n=2
1

n log n >∑k
m=1

1
(2 log 2)(m+1) , which diverges as k → ∞. Therefore,

∑2k+1

n=2
1

n log n

also diverges.
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