MATH 3090, Advanced Calculus I Fall 2006 Toby Kenney Homework Sheet 1 Model Solutions

Compulsory questions

1 Prove from the definition of convergence that the sequence 1, 2, 3, ... does not converge to any real number x.

We need to show that for any x,

 $(\exists \epsilon > 0) (\forall N) (\exists n \ge N) (|a_n - x| \ge \epsilon)$

This means we can choose the ϵ . In this case any $\epsilon > 0$ works. We will take $\epsilon = 1$. Now there is some natural number k > x. If $n \ge k + 1$, then $|a_n - x| \ge |a_n - k| \ge 1$. So for any N, we can take n = N + k + 1. Then $n \ge N$, and $|a_n - x| \ge \epsilon$.

2 (a) Show that if (x_n) is a sequence, such that every subsequence (x_{n_i}) has a subsequence which converges to x, then $x_n \to x$. [Hint: Suppose x_n does not converge to x. Then there is some $\epsilon > 0$ such that for every N, there is n > N with $|x_n - x| > \epsilon$. Construct a sequence of these x_n . does it have a subsequence which converges to x?]

Suppose x_n does not converge to x. Then there is some $\epsilon > 0$ such that for every N, there is n > N with $|x_n - x| > \epsilon$. Choose n_0 so that $|x_{n_0} - x| > \epsilon$. Choose $n_1 \ge n_0 + 1$ so that $|x_{n_1} - x| > \epsilon$. Continue this process to get a subsequence $x_{n_0}, x_{n_1}, x_{n_2}, \ldots$ where each x_{n_i} satisfies $|x_{n_i} - x| \ge \epsilon$. Any subsequence of the x_{n_i} cannot converge to x, since it has no N such that for all $k \ge N$, $|x_{n_{i_k}} - x| < \epsilon$. However, this contradicts our initial assumption that any subsequence of x_n has a subsequence that converges to x. Therefore our supposition that x_n does not converge to x must be impossible, i.e. x_n must converge to x.

(b) Deduce that if y_n is a bounded sequence that does not converge, then it has (at least) two convergent subsequences which converge to different limits. [Hint: If x_n does not converge to x, then as in part (a), we can construct a subsequence that has no subsequence converging to x. Use Bolzano-Weierstrass on this subsequence.]

 y_n has a convergent subsequence by the Bolzano-Weierstrass Theorem. Let y_{n_i} be a convergent subsequence, and let its limit be x. y_n does not converge to x, since it does not converge. Therefore, it cannot be the case that every subsequence y_{m_i} has a subsequence that converges to x, since by (a), this would force y_n to converge to x. Pick a subsequence y_{m_i} that has no subsequence converging to x. y_{m_i} is a bounded sequence (it has the same bounds as y_n) so by the Bolzano-Weierstrass theorem, it has a convergent subsequence $y_{m_{i_i}}$. The limit of $y_{m_{i_i}}$ cannot be x, so it must be some $y \neq x$. But $y_{m_{i_i}}$ is a subsequence of y_n that converges to y, and we already found a subsequence converging to x.

3 Which of the following series converge and which diverge? Justify your answers. (You may assume convergence and divergence of the series covered in lectures.)

(a) $\sum_{n=0}^{\infty} \frac{3^n}{n!}$

ratio test:

If $a_n = \frac{3^n}{n!}$, then $\frac{a_{n+1}}{a_n} = \frac{n!3^{n+1}}{(n+1)!3^n} = \frac{3}{n+1} \to 0asn \to \infty$ Therefore, by the ratio test, $\sum_{n=0}^{\infty} \frac{3^n}{n!}$ converges.

root test:

 $n! = ((1 \times n) \times (2 \times (n-1)) \times \ldots \times (\frac{n}{2} \times \frac{n+2}{2}))$ (If *n* is odd, the last term in the product is just $\frac{n+1}{2}$). Each term in the product is at least *n* (except the term $\frac{n+1}{2}$ for n odd) so $n! \ge n^{\frac{n}{2}}$. Therefore, $\left(\frac{3^n}{n!}\right)^{\frac{1}{n}} \le \frac{3}{\sqrt{n}} \to 0$, so by the root test, $\sum_{n=0}^{\infty} \frac{3^n}{n!}$ converges.

(b) $\sum_{n=1}^{\infty} \frac{n!}{n^n}$

comparison test:

For $n \ge 2$, $\frac{n!}{n^n} = \frac{1 \times 2 \times \dots}{n \times n \times \dots} \le \frac{2}{n^2}$, so $\sum_{n=1}^{\infty} \frac{n!}{n^n}$ converges by comparison to $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

ratio test:

If $a_n = \frac{n!}{n^n}$, then $\frac{a_{n+1}}{a_n} = \frac{(n+1)!n^n}{n!(n+1)^{n+1}} = \left(\frac{n}{n+1}\right)^n$. Now, $\left(\frac{n+1}{n}\right)^n = \left(1 + \frac{1}{n}\right)^n = \left(1 +$ terms of the expansion tend to $1 + 1 + \frac{1}{2} + \frac{1}{3!} + \dots$, and the last terms are very small, so the limit of $\left(1+\frac{1}{n}\right)^n$ is e. Therefore, $\left(\frac{n}{n+1}\right)^n \to \frac{1}{e}$ as $n \to \infty$. As $\frac{1}{e} < 1$, $\sum_{n=1}^{\infty} \frac{n!}{n^n}$ converges.

root test:

As above, $n! = ((1 \times n) \times (2 \times (n-1)) \times \ldots \times (\frac{n}{2} \times \frac{n+2}{2}))$. All terms are at most $(\frac{n+1}{2})^2$, so $(n!)^{\frac{1}{n}} \leq \frac{n+1}{2}$. Therefore $(\frac{n!}{n^n})^{\frac{1}{n}} \leq \frac{n+1}{2n} \to \frac{1}{2} < 1$, so $\sum_{n=1}^{\infty} \frac{n!}{n^n}$ converges by the root test.

(c)
$$\sum_{n=1}^{\infty} \sqrt{n^2 + 1} - n$$
 [Hint: $x^2 - y^2 = (x + y)(x - y)$]

comparison test:

 $\begin{array}{l} (\sqrt{n^2+1}-n)(\sqrt{n^2+1}+n) = (n^2+1-n^2) = 1. \ \text{Therefore, } \sqrt{n^2+1}-n = \\ \frac{1}{\sqrt{n^2+1}+n}, \ \text{but } \sqrt{n^2+1}+n \leqslant 3n \ \text{for } n \geqslant 1, \ \text{so } \sqrt{n^2+1}-n \geqslant \frac{1}{3n}, \ \text{so } \\ \sum_{n=1}^{\infty} \sqrt{n^2+1}-n \ \text{diverges by comparison to } \sum_{n=1}^{\infty} \frac{1}{3n}. \end{array}$

integral test:

If $f(x) = \sqrt{x^2 + 1} - x$, then $f'(x) = \frac{2x}{2\sqrt{x^2+1}} - 1 < 0$ for x > 0, so f is a decreasing function of x, so the integral test can be applied.

Making the substitution $x = \sinh y$, we have $\int_0^N \sqrt{x^2 + 1} dx = \int_0^{\sinh^{-1} N} \cosh^2 y dy$. Using the identity $\cosh^2 y = \frac{1 + \cosh(2y)}{2}$, this is $\int_0^{\sinh^{-1} N} \frac{1 + \cosh(2y)}{2} dy = \left[\frac{y}{2} + \frac{\sinh(2y)}{4}\right]_0^{\sinh^{-1} N}$. Using $\sinh(2y) = 2\sinh(y)\cosh(y)$, this is $\frac{\sinh^{-1} N + N\sqrt{N^2 + 1}}{2}$. Therefore, $\int_0^N (\sqrt{x^2 + 1} - x) dx \ge \frac{\sinh^{-1} N}{2}$ which tends to ∞ , so by the integral test, $\sum_{n=1}^\infty \sqrt{n^2 + 1} - n$ diverges.

(d) $\sum_{n=2}^{\infty} \frac{1}{n \log n}$ [Hint: to integrate $\frac{1}{x \log x}$, you may find the substitution $u = \log x$ helpful.]

integral test:

Note that $f(x) = x \log x$ is an increasing function of x, so $g(x) = \frac{1}{x \log x}$ is a decreasing function of x. Therefore, $\sum_{n=2}^{\infty} \frac{1}{n \log n}$ converges if and only if $\int_{2}^{N} \frac{1}{x \log x} dx$ converges as $n \to \infty$.

Let $u = \log x$. $\frac{du}{dx} = \frac{1}{x}$. Therefore, $\int_2^N \frac{1}{x \log x} dx = \int_{\log 2}^{\log N} \frac{1}{ue^u} (e^u) du = [\log u]_{\log 2}^{\log N}$. But $\log(\log N) \to \infty$ as $N \to \infty$, so $\sum_{n=2}^{\infty} \frac{1}{n \log n}$ diverges.

comparison test:

The terms from $n = 2^k + 1$ to $n = 2^{k+1}$ are all at least $\frac{1}{2^{k+1}(k+1)\log 2}$, and there are 2^k values of n between $2^k + 1$ and 2^{k+1} inclusive. Therefore, $\sum_{n=2^k+1}^{2^{k+1}} \frac{1}{n\log n} \ge \frac{2^k}{2^{k+1}(k+1)\log 2} = \frac{1}{(2\log 2)(k+1)}$. Thus $\sum_{n=2}^{2^{k+1}} \frac{1}{n\log n} \ge \sum_{m=1}^k \frac{1}{(2\log 2)(m+1)}$, which diverges as $k \to \infty$. Therefore, $\sum_{n=2}^{2^{k+1}} \frac{1}{n\log n}$ also diverges.