MATH 3090, Advanced Calculus I Fall 2006 Toby Kenney Homework Sheet 3 Model solutions

1 Define the sequence a_n recursively by $a_0 = 1$, and $a_n = \sum_{i=1}^n \frac{2a_{n-i}}{(i+2)!}$ for $n \ge 1$. Given that $\sum_{n=0}^{\infty} a_n$ converges, show that $\sum_{n=0}^{\infty} a_n = \frac{1}{2(3-e)}$. [Hint: Take the Cauchy product with the series $\sum_{n=0}^{\infty} \frac{1}{(n+2)!}$. Now use the relation $a_n = \sum_{i=1}^n \frac{2a_{n-i}}{(i+2)!}$ to simplify. The result should look similar to $\sum_{n=0}^{\infty} a_n$, and enable you to calculate it.]

Observe that $a_{n+1} = \frac{a_n}{3} + \sum_{i=1}^n \frac{2a_{n-i}}{(i+3)!} \leq \frac{a_n}{3} + \sum_{i=1}^n \frac{2a_{n-i}}{3(i+2)!} = \frac{2a_n}{3}$, so $\sum_{n=0}^\infty a_n$ converges by comparison to a geometric series.

For $n \ge 1$, the *n*th term in the Cauchy product of $\sum_{i=0}^{\infty} \frac{1}{(i+2)!}$ and $\sum_{j=0}^{\infty} a_j$ is $\sum_{i=0}^{n} \frac{a_{n-i}}{(i+2)!} = \frac{a_n}{2} + \frac{1}{2} \left(\sum_{i=1}^{n} \frac{2a_{n-i}}{(i+2)!} \right) = \frac{a_n}{2} + \frac{a_n}{2} = a_n$. For n = 0, the term is $\frac{a_0}{2}$, so the Cauchy product is $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n$, so if $S = \sum_{n=0}^{\infty} a_n$, then $S(e-2) = S - \frac{1}{2}$, and thus $S = \frac{1}{2(3-e)}$.

2 For each of the following functions, calculate the pointwise limit, f, if it exists, and determine whether the convergence is uniform. If no domain is specified, the f_n are functions on the whole of \mathbb{R} .

(a)
$$f_n(x) = \begin{cases} 1 & \text{if } x < 0\\ 1 - nx & \text{if } 0 \le x \le \frac{1}{n}\\ 0 & \text{if } x > \frac{1}{n} \end{cases}$$

For $x \leq 0$, $f_n(x) = 1$ for all n, while for x > 0, if $n > \frac{1}{x}$, then $x > \frac{1}{n}$, so $f_n(x) = 0$. Therefore, the pointwise limit is

$$f(x) = \begin{cases} 1 & \text{if } x \leq 0 \\ 0 & \text{if } x > 0 \end{cases}$$

This is not a uniform limit, since for any n, $f_n\left(\frac{1}{2n}\right) = \frac{1}{2}$, so there is an x at which f_n is more than $\varepsilon = \frac{1}{4}$ from f.

(b)
$$f_n(x) = x^n e^{-nx^2}$$

The pointwise limit is 0, since for any n and any x > 0, choose a so that $x = e^a$; now $f_n(x) = e^{n(a-e^{2a})}$; however, $e^{2a} > a$, so $f_n(x) \to 0$. For x = 0, $f_n(x) = 0$ for every n, and for x < 0, f_n is an odd function if n is odd, and an even function if n is even, so in either case, $f_n(x) \to 0$.

To see whether convergence is uniform, we find the maximum and minimum values of f_n on \mathbb{R} . $f'_n(x) = x^{n-1}e^{-nx^2} - 2nx^{n+1}e^{-nx^2}$. This is 0 when x = 0 (for n > 1) or when $2nx^2 = 1$. In the latter case, $f_n(x) = \pm \left(\frac{1}{2n}\right)^{\frac{n}{2}} e^{-\frac{1}{2}}$, which clearly tends to 0 as $n \to \infty$. Therefore, $f_n \to 0$ uniformly.

(c)
$$f_n(x) = \sin\left(\frac{x}{n}\right)$$

As $\frac{x}{n} \to 0$ for all x and sine is a continuous function, the pointwise limit is the constant $\sin 0 = 0$. The convergence is not uniform, since for any n, $f_n\left(\frac{\pi n}{2}\right) = 1$.

(d)
$$f_n(x) = \sin(nx)$$

This does not have a pointwise limit, since for example, if $x = \frac{\pi}{2}$

$$f_n(x) = \begin{cases} 0 & \text{if } x \text{ is even} \\ (-1)^{\frac{x-1}{2}} & \text{if } x \text{ is odd} \end{cases}$$

which does not converge.

(e) $f_n(x) = x^n$ for x in the interval (0,1) (endpoints not included).

The pointwise limit is 0. The convergence is not uniform, as $f_n\left(\left(\frac{1}{2}\right)^{\frac{1}{n}}\right) = \frac{1}{2}$, which does not tend to 0.

(f)
$$f_n(x) = \begin{cases} \frac{1}{n} & \text{if } x = \frac{p}{n^q} \text{for integers } p \text{ and } q \\ 0 & \text{otherwise} \end{cases}$$

For every x, $|f_n(x)| < \frac{2}{n}$, so $f_n \to 0$ uniformly as $n \to \infty$.

3 Let f_n be a sequence of continuous functions converging uniformly to f(which is therefore continuous). Suppose that $x_n \to x$ is a sequence of real numbers. Show that $f_n(x_n) \to f(x)$. (You may assume that if f is continuous and $a_n \to a$, then $f(a_n) \to f(a)$.) [Hint: for $\varepsilon > 0$, first choose N so that for n > N, $|f(x_n) - f(x)| < \frac{\varepsilon}{2}$, then choose M > N so that $|f_M - f| < \frac{\varepsilon}{2}$. Do not choose M before N - it won't work!]

For any $\varepsilon > 0$, we choose N so that for every $n \ge N$, $|f(x) - f(x_n)| < \frac{\varepsilon}{2}$. Now we choose M such that for any $m \ge M$ and any y, $|f_m(y) - f(y)| < \frac{\varepsilon}{2}$. Now we have for $n \ge N + M$,

$$|f_n(x_n) - f(x)| \leq |f_n(x_n) - f(x_n)| + |f(x_n) - f(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Therefore, $f_n(x_n) \to f(x)$ as $n \to \infty$.

To see why choosing M first doesn't work, observe that if we say

$$|f_n(x_n) - f(x)| \leq |f_n(x_n) - f_n(x)| + |f_n(x) - f(x)|$$

then we need to be able to pick N so that for every $n \ge M$, and every $m \ge N$, $|f_n(x_m) - f_n(x)| < \frac{\varepsilon}{2}$. This means that we need for every x and every $\varepsilon > 0$, a $\delta > 0$ which demonstrates that all of the f_n are continuous. This is an important property that a sequence of functions might have, but it is not implied by uniform convergence.