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1 Define the sequence an recursively by a0 = 1, and an =
∑n

i=1
2an−i

(i+2)! for
n > 1. Given that

∑∞
n=0 an converges, show that

∑∞
n=0 an = 1

2(3−e) .
[Hint: Take the Cauchy product with the series

∑∞
n=0

1
(n+2)! . Now use the

relation an =
∑n

i=1
2an−i

(i+2)! to simplify. The result should look similar to∑∞
n=0 an, and enable you to calculate it.]

Observe that an+1 = an

3 +
∑n

i=1
2an−i

(i+3)! 6 an

3 +
∑n

i=1
2an−i

3(i+2)! = 2an

3 , so∑∞
n=0 an converges by comparison to a geometric series.

For n > 1, the nth term in the Cauchy product of
∑∞

i=0
1

(i+2)! and
∑∞

j=0 aj

is
∑n

i=0
an−i

(i+2)! = an

2 + 1
2

(∑n
i=1

2an−i

(i+2)!

)
= an

2 + an

2 = an. For n = 0, the

term is a0
2 , so the Cauchy product is a0

2 +
∑∞

n=1 an, so if S =
∑∞

n=0 an,
then S(e− 2) = S − 1

2 , and thus S = 1
2(3−e) .

2 For each of the following functions, calculate the pointwise limit, f , if it
exists, and determine whether the convergence is uniform. If no domain
is specified, the fn are functions on the whole of R.

(a) fn(x) =

 1 if x < 0
1− nx if 0 6 x 6 1

n
0 if x > 1

n

For x 6 0, fn(x) = 1 for all n, while for x > 0, if n > 1
x , then x > 1

n , so
fn(x) = 0. Therefore, the pointwise limit is

f(x) =
{

1 if x 6 0
0 if x > 0

This is not a uniform limit, since for any n, fn

(
1
2n

)
= 1

2 , so there is an x
at which fn is more than ε = 1

4 from f .

(b) fn(x) = xne−nx2

The pointwise limit is 0, since for any n and any x > 0, choose a so that
x = ea; now fn(x) = en(a−e2a); however, e2a > a, so fn(x) → 0. For
x = 0, fn(x) = 0 for every n, and for x < 0, fn is an odd function if n is
odd, and an even function if n is even, so in either case, fn(x) → 0.
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To see whether convergence is uniform, we find the maximum and min-
imum values of fn on R. f ′n(x) = xn−1e−nx2 − 2nxn+1e−nx2

. This is
0 when x = 0 (for n > 1) or when 2nx2 = 1. In the latter case,
fn(x) = ±

(
1
2n

)n
2 e−

1
2 , which clearly tends to 0 as n → ∞. Therefore,

fn → 0 uniformly.

(c) fn(x) = sin
(

x
n

)
As x

n → 0 for all x and sine is a continuous function, the pointwise limit
is the constant sin 0 = 0. The convergence is not uniform, since for any n,
fn

(
πn
2

)
= 1.

(d) fn(x) = sin(nx)

This does not have a pointwise limit, since for example, if x = π
2

fn(x) =
{

0 if x is even
(−1)

x−1
2 if x is odd

which does not converge.

(e) fn(x) = xn for x in the interval (0, 1) (endpoints not included).

The pointwise limit is 0. The convergence is not uniform, as fn

((
1
2

) 1
n

)
=

1
2 , which does not tend to 0.

(f) fn(x) =
{

1
n if x = p

nq for integers p and q
0 otherwise

For every x, |fn(x)| < 2
n , so fn → 0 uniformly as n →∞.

3 Let fn be a sequence of continuous functions converging uniformly to f
(which is therefore continous). Suppose that xn → x is a sequence of
real numbers. Show that fn(xn) → f(x). (You may assume that if f is
continuous and an → a, then f(an) → f(a).) [Hint: for ε > 0, first
choose N so that for n > N , |f(xn)− f(x)| < ε

2 , then choose M > N so
that |fM − f | < ε

2 . Do not choose M before N – it won’t work!]

For any ε > 0, we choose N so that for every n > N , |f(x)− f(xn)| < ε
2 .

Now we choose M such that for any m > M and any y, |fm(y)−f(y)| < ε
2 .

Now we have for n > N + M ,

|fn(xn)− f(x)| 6 |fn(xn)− f(xn)|+ |f(xn)− f(x)| < ε

2
+

ε

2
= ε
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Therefore, fn(xn) → f(x) as n →∞.

To see why choosing M first doesn’t work, observe that if we say

|fn(xn)− f(x)| 6 |fn(xn)− fn(x)|+ |fn(x)− f(x)|

then we need to be able to pick N so that for every n > M , and every
m > N , |fn(xm)− fn(x)| < ε

2 . This means that we need for every x and
every ε > 0, a δ > 0 which demonstrates that all of the fn are continuous.
This is an important property that a sequence of functions might have, but
it is not implied by uniform convergence.
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