MATH 3090, Advanced Calculus I
 Fall 2006

Toby Kenney
Homework Sheet 3
Model solutions
1 Define the sequence a_{n} recursively by $a_{0}=1$, and $a_{n}=\sum_{i=1}^{n} \frac{2 a_{n-i}}{(i+2)!}$ for $n \geqslant 1$. Given that $\sum_{n=0}^{\infty} a_{n}$ converges, show that $\sum_{n=0}^{\infty} a_{n}=\frac{1}{2(3-e)}$. [Hint: Take the Cauchy product with the series $\sum_{n=0}^{\infty} \frac{1}{(n+2)!}$. Now use the relation $a_{n}=\sum_{i=1}^{n} \frac{2 a_{n-i}}{(i+2)!}$ to simplify. The result should look similar to $\sum_{n=0}^{\infty} a_{n}$, and enable you to calculate it.]

Observe that $a_{n+1}=\frac{a_{n}}{3}+\sum_{i=1}^{n} \frac{2 a_{n-i}}{(i+3)!} \leqslant \frac{a_{n}}{3}+\sum_{i=1}^{n} \frac{2 a_{n-i}}{3(i+2)!}=\frac{2 a_{n}}{3}$, so $\sum_{n=0}^{\infty} a_{n}$ converges by comparison to a geometric series.
For $n \geqslant 1$, the nth term in the Cauchy product of $\sum_{i=0}^{\infty} \frac{1}{(i+2)!}$ and $\sum_{j=0}^{\infty} a_{j}$ is $\sum_{i=0}^{n} \frac{a_{n-i}}{(i+2)!}=\frac{a_{n}}{2}+\frac{1}{2}\left(\sum_{i=1}^{n} \frac{2 a_{n-i}}{(i+2)!}\right)=\frac{a_{n}}{2}+\frac{a_{n}}{2}=a_{n}$. For $n=0$, the term is $\frac{a_{0}}{2}$, so the Cauchy product is $\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n}$, so if $S=\sum_{n=0}^{\infty} a_{n}$, then $S(e-2)=S-\frac{1}{2}$, and thus $S=\frac{1}{2(3-e)}$.

2 For each of the following functions, calculate the pointwise limit, f, if it exists, and determine whether the convergence is uniform. If no domain is specified, the f_{n} are functions on the whole of \mathbb{R}.
(a) $f_{n}(x)= \begin{cases}1 & \text { if } x<0 \\ 1-n x & \text { if } 0 \leqslant x \leqslant \frac{1}{n} \\ 0 & \text { if } x>\frac{1}{n}\end{cases}$

For $x \leqslant 0, f_{n}(x)=1$ for all n, while for $x>0$, if $n>\frac{1}{x}$, then $x>\frac{1}{n}$, so $f_{n}(x)=0$. Therefore, the pointwise limit is

$$
f(x)= \begin{cases}1 & \text { if } x \leqslant 0 \\ 0 & \text { if } x>0\end{cases}
$$

This is not a uniform limit, since for any $n, f_{n}\left(\frac{1}{2 n}\right)=\frac{1}{2}$, so there is an x at which f_{n} is more than $\varepsilon=\frac{1}{4}$ from f.
(b) $f_{n}(x)=x^{n} e^{-n x^{2}}$

The pointwise limit is 0 , since for any n and any $x>0$, choose a so that $x=e^{a}$; now $f_{n}(x)=e^{n\left(a-e^{2 a}\right)}$; however, $e^{2 a}>a$, so $f_{n}(x) \rightarrow 0$. For $x=0, f_{n}(x)=0$ for every n, and for $x<0, f_{n}$ is an odd function if n is odd, and an even function if n is even, so in either case, $f_{n}(x) \rightarrow 0$.

To see whether convergence is uniform, we find the maximum and minimum values of f_{n} on \mathbb{R}. $f_{n}^{\prime}(x)=x^{n-1} e^{-n x^{2}}-2 n x^{n+1} e^{-n x^{2}}$. This is 0 when $x=0$ (for $n>1$) or when $2 n x^{2}=1$. In the latter case, $f_{n}(x)= \pm\left(\frac{1}{2 n}\right)^{\frac{n}{2}} e^{-\frac{1}{2}}$, which clearly tends to 0 as $n \rightarrow \infty$. Therefore, $f_{n} \rightarrow 0$ uniformly.
(c) $f_{n}(x)=\sin \left(\frac{x}{n}\right)$

As $\frac{x}{n} \rightarrow 0$ for all x and sine is a continuous function, the pointwise limit is the constant $\sin 0=0$. The convergence is not uniform, since for any n, $f_{n}\left(\frac{\pi n}{2}\right)=1$.
(d) $f_{n}(x)=\sin (n x)$

This does not have a pointwise limit, since for example, if $x=\frac{\pi}{2}$

$$
f_{n}(x)= \begin{cases}0 & \text { if } x \text { is even } \\ (-1)^{\frac{x-1}{2}} & \text { if } x \text { is odd }\end{cases}
$$

which does not converge.
(e) $f_{n}(x)=x^{n}$ for x in the interval $(0,1)$ (endpoints not included).

The pointwise limit is 0 . The convergence is not uniform, as $f_{n}\left(\left(\frac{1}{2}\right)^{\frac{1}{n}}\right)=$ $\frac{1}{2}$, which does not tend to 0 .

$$
\text { (f) } f_{n}(x)= \begin{cases}\frac{1}{n} & \text { if } x=\frac{p}{n^{q}} \text { for integers } p \text { and } q \\ 0 & \text { otherwise }\end{cases}
$$

For every $x,\left|f_{n}(x)\right|<\frac{2}{n}$, so $f_{n} \rightarrow 0$ uniformly as $n \rightarrow \infty$.
3 Let f_{n} be a sequence of continuous functions converging uniformly to f (which is therefore continous). Suppose that $x_{n} \rightarrow x$ is a sequence of real numbers. Show that $f_{n}\left(x_{n}\right) \rightarrow f(x)$. (You may assume that if f is continuous and $a_{n} \rightarrow a$, then $f\left(a_{n}\right) \rightarrow f(a)$.) [Hint: for $\varepsilon>0$, first choose N so that for $n>N,\left|f\left(x_{n}\right)-f(x)\right|<\frac{\varepsilon}{2}$, then choose $M>N$ so that $\left|f_{M}-f\right|<\frac{\varepsilon}{2}$. Do not choose M before N - it won't work!]

For any $\varepsilon>0$, we choose N so that for every $n \geqslant N,\left|f(x)-f\left(x_{n}\right)\right|<\frac{\varepsilon}{2}$. Now we choose M such that for any $m \geqslant M$ and any $y,\left|f_{m}(y)-f(y)\right|<\frac{\varepsilon}{2}$. Now we have for $n \geqslant N+M$,

$$
\left|f_{n}\left(x_{n}\right)-f(x)\right| \leqslant\left|f_{n}\left(x_{n}\right)-f\left(x_{n}\right)\right|+\left|f\left(x_{n}\right)-f(x)\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

Therefore, $f_{n}\left(x_{n}\right) \rightarrow f(x)$ as $n \rightarrow \infty$.

To see why choosing M first doesn't work, observe that if we say

$$
\left|f_{n}\left(x_{n}\right)-f(x)\right| \leqslant\left|f_{n}\left(x_{n}\right)-f_{n}(x)\right|+\left|f_{n}(x)-f(x)\right|
$$

then we need to be able to pick N so that for every $n \geqslant M$, and every $m \geqslant N,\left|f_{n}\left(x_{m}\right)-f_{n}(x)\right|<\frac{\varepsilon}{2}$. This means that we need for every x and every $\varepsilon>0$, a $\delta>0$ which demonstrates that all of the f_{n} are continuous. This is an important property that a sequence of functions might have, but it is not implied by uniform convergence.

