MATH 3090, Advanced Calculus I Fall 2006

Toby Kenney Homework Sheet 4 Model solutions

Compulsory questions

1 Which of the following series of functions converge uniformly on the interval (0,1)? If they do not converge uniformly, is the limit continuous?

(a)
$$\sum_{n=0}^{\infty} \frac{x^n}{x+n}$$
 [You may assume that $\left(1-\frac{1}{N}\right)^N\geqslant \frac{1}{12}$ for $N\geqslant 2$.]

This does not converge uniformly, since $\sum_{n=N}^{\infty}\frac{x^n}{x+n}\geqslant\sum_{n=N}^{\infty}\frac{x^n}{n+1}$, and for any $N\geqslant 2$, if we let $x=1-\frac{1}{N}$, then $x^N\geqslant\frac{1}{12}$ (see below) and for $N\leqslant n<2N,\ x^n\geqslant\frac{1}{144}$, so $\frac{x^n}{n+1}\geqslant\frac{1}{288N}$. There are N terms between N and 2N, so their sum is at least $\frac{1}{288}$. Therefore the series does not converge uniformly.

The limit is continuous, because the convergence is uniform on the interval (0,R] for any R < 1, as $\frac{x^n}{x+n}$ is an increasing function of x in the interval (0,1) for any $n \ge 1$ (its derivative is $\frac{nx^{n-1}(x+n)-x^n}{(x+n)^2}$, which is positive in (0,1)). The terms of the series (after the n=0 term) are therefore bounded by $\frac{R^n}{R+n}$, so convergence is uniform on the interval (0,R) by the Weierstrass M-test with $M_n = \frac{R^n}{R+n}$.

To show that $\left(1-\frac{1}{N}\right)^N\geqslant \frac{1}{12}$, for $N\geqslant 2$, we note that its binomial expansion is an alternating series beginnig $1-1+\frac{N-1}{2N}-\frac{(N-1)(N-2)}{6N^2}+\ldots$. The terms are decreasing in modulus, so by the alternating series test, the sum is at least $1-1+\frac{N-1}{2N}-\frac{(N-1)(N-2)}{6N^2}$, which is at least $1-1+\frac{1}{4}-\frac{1}{6}=\frac{1}{12}$.

In fact, $\left(1-\frac{1}{N}\right)^N \to e^{-1}$, this can be seen by observing that its binomial expansion is approximately the power series for e^x evaluated at -1. We can show that the difference between its binomial expansion and the power series for e^{-1} tends to 0 as $n \to \infty$.

$$(b) \sum_{n=1}^{\infty} \frac{1}{n^2 + x}$$

As x > 0, $\frac{1}{n^2+x} < \frac{1}{n^2}$, so the series converges uniformly by the Weierstrass M-test, with $M_n = \frac{1}{n^2}$.

(c)
$$\sum_{n=1}^{\infty} \frac{\cos(n(x+1))}{n}$$
 [Hint: multiply by $2\sin\left(\frac{x+1}{2}\right)$. Recall that $2\sin\alpha\cos\beta = 1$

 $\sin(\beta + \alpha) - \sin(\beta - \alpha)$. There should then be cancellation between consecutive terms of the resulting series.]

$$2\sin\left(\frac{x+1}{2}\right)\sum_{n=1}^{\infty}\frac{\cos(n(x+1))}{n} = \sum_{n=1}^{\infty}\frac{2\sin\left(\frac{x+1}{2}\right)\cos(n(x+1))}{n}$$
$$= \sum_{n=1}^{\infty}\frac{\sin\left(\left(n+\frac{1}{2}\right)(x+1)\right)-\sin\left(\left(n-\frac{1}{2}\right)(x+1)\right)}{n}$$

But the $\sin\left(\left(n+\frac{1}{2}\right)(x+1)\right)$ and the $\sin\left(\left((n+1)-\frac{1}{2}\right)(x+1)\right)$ terms partially cancel, to give

$$\left(\sum_{n=1}^{\infty} \frac{\sin\left(\left(n + \frac{1}{2}\right)(x+1)\right)}{n(n+1)}\right) - \sin\left(\frac{1}{2}(x+1)\right)$$

which converges uniformly by the Weierstrass M-test, where $M_n = \frac{1}{n(n+1)}$.

Now, for 0 < x < 1, $0.1 < 2\sin(\frac{x+1}{2}) < 2$, so for any $x \in (0,1)$,

$$\sum_{n=N}^{\infty} \frac{\cos(n(x+1))}{n} < 10 \left(2 \sin\left(\frac{x+1}{2}\right)\right) \left(\sum_{n=N}^{\infty} \frac{\cos(n(x+1))}{n}\right)$$

Therefore, $\sum_{n=1}^{\infty} \frac{\cos(n(x+1))}{n}$ also converges uniformly.

2 (a)Suppose (f_n) is a sequence of continuously differentiable functions on an interval [a,b], converging pointwise to f. Suppose the derivatives f'_n converge uniformly to g on [a,b]. (In Theorem 7.12 we showed that g is the derivative of f.) Prove that $f_n \to f$ uniformly on [a,b]. (You may assume that $\left|\int_x^y f(t)dt\right| \leqslant \int_x^y |f(t)|dt$.)

On [a,b], $f(x) = f(a) + \int_a^x g(t)dt$, while $f_n(x) = f_n(a) + \int_a^x f'_n(t)dt$. Given $\epsilon > 0$, we can choose N and M so that $|f(a) - f_n(a)| < \frac{\epsilon}{2}$ for all $n \ge N$, and $|g(t) - f'_m(t)| < \frac{\epsilon}{2(b-a)}$ for all $m \ge M$ and all $t \in [a,b]$. Now

$$|f(x) - f_n(x)| = \left| f(a) - f_n(a) + \int_a^x g(t) - f'_n(t) dt \right|$$

$$\leq |f(a) - f_n(a)| + \int_a^x |g(t) - f'_n(t)| dt < \frac{\epsilon}{2} + \frac{\epsilon(x - a)}{2(b - a)} < \epsilon$$

Therefore, $f_n \to x$ uniformly on [a, b].

(b) What if instead of the finite interval [a,b], the sequence f_n converges pointwise to f on the interval $[a,\infty)$, and $f'_n \to g$ uniformly on $[a,\infty)$?

Now the argument above won't work because our integral might be arbitrarily long. Consider $f_n(x) = \frac{x}{n}$, and f(x) = 0. We have that $f_n \to 0$ pointwise on $(-\infty, \infty)$, and $f'_n \to 0$ uniformly on $(-\infty, \infty)$, but f_n does not converge uniformly on any interval $[a, \infty)$.

3 Find the radius of convergence of each of the following power series. Do they converge at the points where |x| is equal to the radius of convergence? (a) $\sum_{n=0}^{\infty} \frac{x^n}{n^3+2n+3}$

As $n \to \infty$, $\frac{(n+1)^3+2(n+1)+3}{n^3+2n+3} \to 1$. Therefore, by the ratio test, if |x| < 1 then $\sum_{n=0}^{\infty} \frac{x^n}{n^3+2n+3}$ converges, while if |x| > 1, $\sum_{n=0}^{\infty} \frac{x^n}{n^3+2n+3}$ diverges. Therefore, the radius of convergence is 1.

When $|x|=1, \sum_{n=0}^{\infty} \frac{x^n}{n^3+2n+3}$ converges by comparison to $\sum_{n=1}^{\infty} \frac{1}{n^3}$.

$$(b) \sum_{n=0}^{\infty} \frac{x^{\binom{n^2}{2}}}{n!}$$

 $\frac{x^{\left((n+1)^2\right)}}{x^{(n^2)}}=x^{2n+1},$ while $\frac{(n+1)!}{n!}=n+1.$ Therefore, the ratio of consecutive terms in the series is $\frac{x^{2n+1}}{n+1},$ which tends to zero if |x|<1, and diverges if |x|>1. Therefore, the radius of convergence is 1.

When |x| = 1, the series converges (e.g. by the ratio test).

(c)
$$\sum_{n=0}^{\infty} \frac{x^{2n}}{2^n(n+3)}$$

The ratio test tells us that this series converges if $\frac{x^2(n+4)}{2(n+3)}$ tends to a limit that is < 1, and diverges if it tends to a limit that is > 1. However, the limit is $\frac{x^2}{2}$, so the radius of convergence is $\sqrt{2}$.

When $x = \pm \sqrt{2}$, the series is $\sum_{n=0}^{\infty} \frac{1}{n+3}$, which diverges by comparison to $\sum_{n=0}^{\infty} \frac{1}{2n}$.