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Compulsory questions

1 Which of the following series of functions converge uniformly on the in-
terval (0,1)? If they do not converge uniformly, is the limit continuous?

(a)
∑∞

n=0
xn

x+n [You may assume that
(
1− 1

N

)N
> 1

12 for N > 2.]

This does not converge uniformly, since
∑∞

n=N
xn

x+n >
∑∞

n=N
xn

n+1 , and
for any N > 2, if we let x = 1 − 1

N , then xN > 1
12 (see below) and for

N 6 n < 2N , xn > 1
144 , so xn

n+1 > 1
288N . There are N terms between

N and 2N , so their sum is at least 1
288 . Therefore the series does not

converge uniformly.

The limit is continuous, because the convergence is uniform on the interval
(0, R] for any R < 1, as xn

x+n is an increasing function of x in the interval

(0, 1) for any n > 1 (its derivative is nxn−1(x+n)−xn

(x+n)2 , which is positive
in (0, 1)). The terms of the series (after the n = 0 term) are therefore
bounded by Rn

R+n , so convergence is uniform on the interval (0, R) by the
Weierstrass M-test with Mn = Rn

R+n .

To show that
(
1− 1

N

)N
> 1

12 , for N > 2, we note that its binomial
expansion is an alternating series begining 1−1+ N−1

2N − (N−1)(N−2)
6N2 + . . ..

The terms are decreasing in modulus, so by the alternating series test, the
sum is at least 1−1+ N−1

2N − (N−1)(N−2)
6N2 , which is at least 1−1+ 1

4−
1
6 = 1

12 .

In fact,
(
1− 1

N

)N → e−1, this can be seen by observing that its binomial
expansion is approximately the power series for ex evaluated at −1. We
can show that the difference between its binomial expansion and the power
series for e−1 tends to 0 as n →∞.

(b)
∑∞

n=1
1

n2+x

As x > 0, 1
n2+x < 1

n2 , so the series converges uniformly by the Weierstrass
M-test, with Mn = 1

n2 .

(c)
∑∞

n=1
cos(n(x+1))

n [Hint: multiply by 2 sin
(

x+1
2

)
. Recall that 2 sinα cos β =

1



sin(β +α)− sin(β−α). There should then be cancellation between consec-
utive terms of the resulting series.]

2 sin
(

x + 1
2

) ∞∑
n=1

cos(n(x + 1))
n

=
∞∑

n=1

2 sin
(

x+1
2

)
cos(n(x + 1))
n

=
∞∑

n=1

sin
((

n + 1
2

)
(x + 1)

)
− sin

((
n− 1

2

)
(x + 1)

)
n

But the sin
((

n + 1
2

)
(x + 1)

)
and the sin

((
(n + 1)− 1

2

)
(x + 1)

)
terms

partially cancel, to give( ∞∑
n=1

sin
((

n + 1
2

)
(x + 1)

)
n(n + 1)

)
− sin

(
1
2
(x + 1)

)
which converges uniformly by the Weierstrass M-test, where Mn = 1

n(n+1) .

Now, for 0 < x < 1, 0.1 < 2 sin
(

x+1
2

)
< 2, so for any x ∈ (0, 1),

∞∑
n=N

cos(n(x + 1))
n

< 10
(

2 sin
(

x + 1
2

))( ∞∑
n=N

cos(n(x + 1))
n

)

Therefore,
∑∞

n=1
cos(n(x+1))

n also converges uniformly.

2 (a)Suppose (fn) is a sequence of continuously differentiable functions on
an interval [a, b], converging pointwise to f . Suppose the derivatives f ′n
converge uniformly to g on [a, b]. (In Theorem 7.12 we showed that g is
the derivative of f .) Prove that fn → f uniformly on [a, b]. (You may
assume that

∣∣∫ y

x
f(t)dt

∣∣ 6 ∫ y

x
|f(t)|dt.)

On [a, b], f(x) = f(a)+
∫ x

a
g(t)dt, while fn(x) = fn(a)+

∫ x

a
f ′n(t)dt. Given

ε > 0, we can choose N and M so that |f(a)− fn(a)| < ε
2 for all n > N ,

and |g(t)− f ′m(t)| < ε
2(b−a) for all m > M and all t ∈ [a, b]. Now

|f(x)− fn(x)| =
∣∣∣∣f(a)− fn(a) +

∫ x

a

g(t)− f ′n(t)dt

∣∣∣∣
6 |f(a)− fn(a)|+

∫ x

a

|g(t)− f ′n(t)|dt <
ε

2
+

ε(x− a)
2(b− a)

< ε

Therefore, fn → x uniformly on [a, b].

(b) What if instead of the finite interval [a, b], the sequence fn converges
pointwise to f on the interval [a,∞), and f ′n → g uniformly on [a,∞)?

2



Now the argument above won’t work because our integral might be arbi-
trarily long. Consider fn(x) = x

n , and f(x) = 0. We have that fn → 0
pointwise on (−∞,∞), and f ′n → 0 uniformly on (−∞,∞), but fn does
not converge uniformly on any interval [a,∞).

3 Find the radius of convergence of each of the following power series. Do
they converge at the points where |x| is equal to the radius of convergence?

(a)
∑∞

n=0
xn

n3+2n+3

As n → ∞, (n+1)3+2(n+1)+3
n3+2n+3 → 1. Therefore, by the ratio test, if |x| < 1

then
∑∞

n=0
xn

n3+2n+3 converges, while if |x| > 1,
∑∞

n=0
xn

n3+2n+3 diverges.
Therefore, the radius of convergence is 1.

When |x| = 1,
∑∞

n=0
xn

n3+2n+3 converges by comparison to
∑∞

n=1
1

n3 .

(b)
∑∞

n=0
x(n2)

n!

x((n+1)2)
x(n2) = x2n+1, while (n+1)!

n! = n+1. Therefore, the ratio of consecutive

terms in the series is x2n+1

n+1 , which tends to zero if |x| < 1, and diverges if
|x| > 1. Therefore, the radius of convergence is 1.

When |x| = 1, the series converges (e.g. by the ratio test).

(c)
∑∞

n=0
x2n

2n(n+3)

The ratio test tells us that this series converges if x2(n+4)
2(n+3) tends to a limit

that is < 1, and diverges if it tends to a limit that is > 1. However, the
limit is x2

2 , so the radius of convergence is
√

2.

When x = ±
√

2, the series is
∑∞

n=0
1

n+3 , which diverges by comparison to∑∞
n=0

1
2n .
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