MATH 3090, Advanced Calculus I
 Fall 2006

Toby Kenney
Homework Sheet 4
Model solutions

Compulsory questions

1 Which of the following series of functions converge uniformly on the interval (0,1)? If they do not converge uniformly, is the limit continuous?
(a) $\sum_{n=0}^{\infty} \frac{x^{n}}{x+n}$ [You may assume that $\left(1-\frac{1}{N}\right)^{N} \geqslant \frac{1}{12}$ for $N \geqslant 2$.]

This does not converge uniformly, since $\sum_{n=N}^{\infty} \frac{x^{n}}{x+n} \geqslant \sum_{n=N}^{\infty} \frac{x^{n}}{n+1}$, and for any $N \geqslant 2$, if we let $x=1-\frac{1}{N}$, then $x^{N} \geqslant \frac{1}{12}$ (see below) and for $N \leqslant n<2 N, x^{n} \geqslant \frac{1}{144}$, so $\frac{x^{n}}{n+1} \geqslant \frac{1}{288 N}$. There are N terms between N and $2 N$, so their sum is at least $\frac{1}{288}$. Therefore the series does not converge uniformly.
The limit is continuous, because the convergence is uniform on the interval $(0, R]$ for any $R<1$, as $\frac{x^{n}}{x+n}$ is an increasing function of x in the interval $(0,1)$ for any $n \geqslant 1$ (its derivative is $\frac{n x^{n-1}(x+n)-x^{n}}{(x+n)^{2}}$, which is positive in $(0,1)$). The terms of the series (after the $n=0$ term) are therefore bounded by $\frac{R^{n}}{R+n}$, so convergence is uniform on the interval $(0, R)$ by the Weierstrass M-test with $M_{n}=\frac{R^{n}}{R+n}$.
To show that $\left(1-\frac{1}{N}\right)^{N} \geqslant \frac{1}{12}$, for $N \geqslant 2$, we note that its binomial expansion is an alternating series begining $1-1+\frac{N-1}{2 N}-\frac{(N-1)(N-2)}{6 N^{2}}+\ldots$. The terms are decreasing in modulus, so by the alternating series test, the sum is at least $1-1+\frac{N-1}{2 N}-\frac{(N-1)(N-2)}{6 N^{2}}$, which is at least $1-1+\frac{1}{4}-\frac{1}{6}=\frac{1}{12}$. In fact, $\left(1-\frac{1}{N}\right)^{N} \rightarrow e^{-1}$, this can be seen by observing that its binomial expansion is approximately the power series for e^{x} evaluated at -1 . We can show that the difference between its binomial expansion and the power series for e^{-1} tends to 0 as $n \rightarrow \infty$.
(b) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+x}$

As $x>0, \frac{1}{n^{2}+x}<\frac{1}{n^{2}}$, so the series converges uniformly by the Weierstrass M-test, with $M_{n}=\frac{1}{n^{2}}$.
(c) $\sum_{n=1}^{\infty} \frac{\cos (n(x+1))}{n}$ [Hint: multiply by $2 \sin \left(\frac{x+1}{2}\right)$. Recall that $2 \sin \alpha \cos \beta=$
$\sin (\beta+\alpha)-\sin (\beta-\alpha)$. There should then be cancellation between consecutive terms of the resulting series.]

$$
\begin{aligned}
2 \sin \left(\frac{x+1}{2}\right) \sum_{n=1}^{\infty} \frac{\cos (n(x+1))}{n} & =\sum_{n=1}^{\infty} \frac{2 \sin \left(\frac{x+1}{2}\right) \cos (n(x+1))}{n} \\
& =\sum_{n=1}^{\infty} \frac{\sin \left(\left(n+\frac{1}{2}\right)(x+1)\right)-\sin \left(\left(n-\frac{1}{2}\right)(x+1)\right)}{n}
\end{aligned}
$$

But the $\sin \left(\left(n+\frac{1}{2}\right)(x+1)\right)$ and the $\sin \left(\left((n+1)-\frac{1}{2}\right)(x+1)\right)$ terms partially cancel, to give

$$
\left(\sum_{n=1}^{\infty} \frac{\sin \left(\left(n+\frac{1}{2}\right)(x+1)\right)}{n(n+1)}\right)-\sin \left(\frac{1}{2}(x+1)\right)
$$

which converges uniformly by the Weierstrass M-test, where $M_{n}=\frac{1}{n(n+1)}$. Now, for $0<x<1,0.1<2 \sin \left(\frac{x+1}{2}\right)<2$, so for any $x \in(0,1)$,

$$
\sum_{n=N}^{\infty} \frac{\cos (n(x+1))}{n}<10\left(2 \sin \left(\frac{x+1}{2}\right)\right)\left(\sum_{n=N}^{\infty} \frac{\cos (n(x+1))}{n}\right)
$$

Therefore, $\sum_{n=1}^{\infty} \frac{\cos (n(x+1))}{n}$ also converges uniformly.
2 (a)Suppose $\left(f_{n}\right)$ is a sequence of continuously differentiable functions on an interval $[a, b]$, converging pointwise to f. Suppose the derivatives f_{n}^{\prime} converge uniformly to g on $[a, b]$. (In Theorem 7.12 we showed that g is the derivative of f.) Prove that $f_{n} \rightarrow f$ uniformly on $[a, b]$. (You may assume that $\left|\int_{x}^{y} f(t) d t\right| \leqslant \int_{x}^{y}|f(t)| d t$.)

On $[a, b], f(x)=f(a)+\int_{a}^{x} g(t) d t$, while $f_{n}(x)=f_{n}(a)+\int_{a}^{x} f_{n}^{\prime}(t) d t$. Given $\epsilon>0$, we can choose N and M so that $\left|f(a)-f_{n}(a)\right|<\frac{\epsilon}{2}$ for all $n \geqslant N$, and $\left|g(t)-f_{m}^{\prime}(t)\right|<\frac{\epsilon}{2(b-a)}$ for all $m \geqslant M$ and all $t \in[a, b]$. Now

$$
\begin{aligned}
& \left|f(x)-f_{n}(x)\right|=\left|f(a)-f_{n}(a)+\int_{a}^{x} g(t)-f_{n}^{\prime}(t) d t\right| \\
\leqslant & \left|f(a)-f_{n}(a)\right|+\int_{a}^{x}\left|g(t)-f_{n}^{\prime}(t)\right| d t<\frac{\epsilon}{2}+\frac{\epsilon(x-a)}{2(b-a)}<\epsilon
\end{aligned}
$$

Therefore, $f_{n} \rightarrow x$ uniformly on $[a, b]$.
(b) What if instead of the finite interval $[a, b]$, the sequence f_{n} converges pointwise to f on the interval $[a, \infty)$, and $f_{n}^{\prime} \rightarrow g$ uniformly on $[a, \infty)$?

Now the argument above won't work because our integral might be arbitrarily long. Consider $f_{n}(x)=\frac{x}{n}$, and $f(x)=0$. We have that $f_{n} \rightarrow 0$ pointwise on $(-\infty, \infty)$, and $f_{n}^{\prime} \rightarrow 0$ uniformly on $(-\infty, \infty)$, but f_{n} does not converge uniformly on any interval $[a, \infty)$.

3 Find the radius of convergence of each of the following power series. Do they converge at the points where $|x|$ is equal to the radius of convergence? (a) $\sum_{n=0}^{\infty} \frac{x^{n}}{n^{3}+2 n+3}$

As $n \rightarrow \infty, \frac{(n+1)^{3}+2(n+1)+3}{n^{3}+2 n+3} \rightarrow 1$. Therefore, by the ratio test, if $|x|<1$ then $\sum_{n=0}^{\infty} \frac{x^{n}}{n^{3}+2 n+3}$ converges, while if $|x|>1, \sum_{n=0}^{\infty} \frac{x^{n}}{n^{3}+2 n+3}$ diverges. Therefore, the radius of convergence is 1 .
When $|x|=1, \sum_{n=0}^{\infty} \frac{x^{n}}{n^{3}+2 n+3}$ converges by comparison to $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$.
(b) $\sum_{n=0}^{\infty} \frac{x^{\left(n^{2}\right)}}{n!}$
$\frac{x^{\left.(n+1)^{2}\right)}}{x^{\left(n^{2}\right)}}=x^{2 n+1}$, while $\frac{(n+1)!}{n!}=n+1$. Therefore, the ratio of consecutive terms in the series is $\frac{x^{2 n+1}}{n+1}$, which tends to zero if $|x|<1$, and diverges if $|x|>1$. Therefore, the radius of convergence is 1 .
When $|x|=1$, the series converges (e.g. by the ratio test).
(c) $\sum_{n=0}^{\infty} \frac{x^{2 n}}{2^{n}(n+3)}$

The ratio test tells us that this series converges if $\frac{x^{2}(n+4)}{2(n+3)}$ tends to a limit that is <1, and diverges if it tends to a limit that is >1. However, the limit is $\frac{x^{2}}{2}$, so the radius of convergence is $\sqrt{2}$.
When $x= \pm \sqrt{2}$, the series is $\sum_{n=0}^{\infty} \frac{1}{n+3}$, which diverges by comparison to $\sum_{n=0}^{\infty} \frac{1}{2 n}$.

