MATH 3090, Advanced Calculus I
 Fall 2006

Toby Kenney
Homework Sheet 5
Model Solutions

Compulsory questions

1 (a) Find the radius of convergence of $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{4^{n+1}}$.

The ratio between consecutive terms is $\frac{-x^{2}}{4}$, so the radius of convergence is 2 by the ratio test.
(b) Evaluate $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{4^{n+1}}$ on the interval $(-R, R)$, where R is the radius of convergence [Hint: it's a geometric series]. On what interval is the function you get infinitely differentiable?

The sum is a geometric series with common ratio $\frac{-x^{2}}{4}$, so its sum is $\frac{1}{4}\left(\frac{1}{1+\frac{x^{2}}{4}}\right)=\frac{1}{x^{2}+4}$ on $(-2,2)$. The function $f(x)=\frac{1}{n^{2}+4}$ is infinitely differentiable on the whole of \mathbb{R}.
When we study complex numbers, we will see why the Taylor expansion of $\frac{1}{n^{2}+4}$ only has radius of convergence 2.

2 Let

$$
f(x)= \begin{cases}e^{-\frac{1}{x^{2}}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Differentiate $f(x)$. Show that $x^{n} f(x) \rightarrow 0$ as $x \rightarrow 0$, for any n. Can f be expressed as a Taylor series about 0?
$f^{\prime}(x)=\frac{-2 e^{-\frac{1}{x^{2}}}}{x^{3}}$. To show that $x^{-n} f(x) \rightarrow 0$ as $x \rightarrow 0$, we show that given any n, for sufficiently large $x, e^{x}>x^{n}$.
To do this we observe first that $e^{x} \geqslant e x$ by seeing that they are equal when $\mathrm{x}=1$, and that the derivative of e^{x} is more than e when $x>1$ and less than e when $x<1$. Now this means that for any $m, e^{x}=e^{m \frac{x}{m}}=$ $\left(e^{\frac{x}{m}}\right)^{m} \geqslant\left(\frac{e x}{m}\right)^{m}$. Now if $m=n+1$, then when $x>\frac{m^{m}}{e^{m}}$, we have that $e^{x} \geqslant\left(\frac{x e^{m}}{m^{m}}\right) x^{n}>x^{n}$.
Now, since $\frac{x^{-(n+1)}}{x^{-n}} \rightarrow 0$ as $x \rightarrow \infty$, we have that $x^{n} e^{-x} \rightarrow 0$ as $x \rightarrow \infty$. Therefore, $x^{n} e^{-x^{2}} \rightarrow 0$ as $x \rightarrow \infty$, so $x^{-n} f(x) \rightarrow 0$ as $x \rightarrow 0$, since $x^{-1} \rightarrow \infty$ as $x \rightarrow 0$.

By the product rule, every derivative of f on $\mathbb{R} \backslash\{0\}$ is the product of a polynomial in x^{-1} multiplied by $f(x)$. Therefore, $\frac{\frac{d^{n} f}{d^{n}}}{x} \rightarrow 0$ as $x \rightarrow 0$, so $\left.\frac{d^{(n+1)} f}{d x^{n+1}}\right|_{0}=0$ for all n. Therefore, f does not have a Taylor expansion about 0 , since all the terms in it would be 0 .

3 Suppose that $\sum_{n=0}^{\infty} a_{n} x^{n}$ has radius of convergence R, and suppose $x_{0} \in$ $(-R, R)$. Show that $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ has a Taylor series expansion about x_{0} with radius of convergence at least $R-\left|x_{0}\right|$. [Hint: Calculate the coefficients as power series in x_{0} by differentiating the series repeatedly. Now observe that $\sum_{n=0}^{\infty}\left|a_{n}\right|\left(\sum_{m=0}^{n}\binom{n}{m}\left|x_{0}\right|^{n-m}\left|x-x_{0}\right|^{m}\right)$ converges when $\left|x-x_{0}\right|<R-\left|x_{0}\right|$. Therefore, we can rearrange the terms to get that $\sum_{m=0}^{\infty}\left(\sum_{n=m}^{\infty}\left|a_{n}\right|\binom{n}{m}\left|x_{0}\right|^{n-m}\left|x-x_{0}\right|^{m}\right)$ converges. Compare this to the Taylor series we got by differentiating at x_{0}.]

We know that the m th derivative of f at x_{0} is the $\operatorname{sum} \sum_{n=m}^{\infty} \frac{n!}{(n-m)!} a_{n} x_{0}^{n-m}$. Therefore, the Taylor series expansion of f about x_{0} is

$$
\sum_{m=0}^{\infty}\left(\sum_{n=m}^{\infty}\binom{n}{m} a_{n} x_{0}^{n-m}\left(x-x_{0}\right)^{m}\right)
$$

We also know that $\sum_{m=0}^{n}\binom{n}{m}\left|x_{0}\right|^{n-m}\left|x-x_{0}\right|^{m}=\left(\left|x_{0}\right|+\left|x-x_{0}\right|\right)^{n}$, so for $\left|x_{0}\right|+\left|x-x_{0}\right|<R$, the series

$$
\sum_{n=0}^{\infty} a_{n} \sum_{m=0}^{n}\binom{n}{m} x_{0}^{n-m}\left(x-x_{0}\right)^{m}
$$

is an absolutely convergent double series. Therefore, we can rearrange its terms without affecting the result. In particular,

$$
\sum_{m=0}^{\infty} \sum_{n=m}^{\infty} a_{n}\binom{n}{m}\left(x_{0}\right)^{n-m}\left(x-x_{0}\right)^{m}
$$

is absolutely convergent. But this is the Taylor series above.
4 Find power series about 0 for the following integrals:
(a) $\int_{t=0}^{x} \cos \left(t^{3}\right) d t$
$\cos \left(t^{3}\right)$ has power series $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{6 n}}{(2 n)!}$. The integral of this is the series $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{6 n+1}}{(6 n+1)(2 n)!}$. There is no constant term because the integral starts at 0 , so the value at $x=0$ is 0 .
$\int_{t=0}^{x} \frac{e^{t}-1}{t} d t$
The power series for $\frac{e^{t}-1}{t}$ is $\sum_{n=0}^{\infty} \frac{t^{n}}{(n+1)!}$. Therefore, when we integrate, we get $\sum_{n=1}^{\infty} \frac{t^{n+1}}{(n+1)(n+1)!}$. Again, there is no x^{0} term because we are integrating from 0 .

