MATH 3090, Advanced Calculus I
 Fall 2006

Toby Kenney
Homework Sheet 6
Model Solutions
1 Show that $\cos n \theta=\sum_{j=0}^{\frac{n}{2}}(-1)^{j}\binom{n}{2 j} \cos ^{n-2 j} \theta \sin ^{2 j} \theta$ and that $\sin n \theta=$ $\sum_{j=0}^{\frac{n}{2}}(-1)^{j}\binom{n}{2 j+1} \cos ^{n-2 j-1} \theta \sin ^{2 j+1} \theta . \quad$ [Hint: use $e^{i \theta}=\cos \theta+$ $i \sin \theta$ and the binomial formula.]
$e^{i n \theta}=\left(e^{i \theta}\right)^{n}=(\cos \theta+i \sin \theta)^{n}$. By the binomial theorem:

$$
(\cos \theta+i \sin \theta)^{n}=\sum_{j=0}^{n}\binom{n}{j} i^{j} \cos ^{n-j} \theta \sin ^{j} \theta
$$

We know that $i^{4 j}=1, i^{4 j+1}=i, i^{4 j+2}=-1$ and $i^{4 j+3}=-i$, so, taking real and imaginary parts, we get:

$$
\cos n \theta=\sum_{j=0}^{\frac{n}{2}}(-1)^{j}\binom{n}{2 j} \cos ^{n-2 j} \theta \sin ^{2 j} \theta
$$

and

$$
\sin n \theta=\sum_{j=0}^{\frac{n}{2}}(-1)^{j}\binom{n}{2 j+1} \cos ^{n-2 j-1} \theta \sin ^{2 j+1} \theta
$$

2 Which non-zero complex numbers z have the property that $z+\frac{1}{z}$ is real?
Let $z=a+i b$. Then $\frac{1}{z}=\frac{a-i b}{a^{2}+b^{2}}$, so the imaginary part of $z+\frac{1}{z}$ is $b\left(1-\frac{1}{a^{2}+b^{2}}\right) \cdot z+\frac{1}{z}$ is real when this is zero, which happens either when $b=0$, or when $a^{2}+b^{2}=1$. Therefore, the complex numbers that have the property given are the real numbers, and the numbers with modulus 1.

3 Evaluate the following improper integrals
(a) $\int_{0}^{\infty} \int_{t}^{\infty} e^{-x^{2}} d x d t$

The integral converges absolutely, so we can change the order of integration to get $\int_{0}^{\infty} \int_{0}^{x} d t e^{-x^{2}} d x=\int_{0}^{\infty} x e^{-x^{2}} d x=\left[-\frac{1}{2} e^{-x^{2}}\right]_{0}^{\infty}=0-\left(-\frac{1}{2}\right)=\frac{1}{2}$.
(b) $\int_{0}^{\infty} \frac{1-\cos t}{t^{2}} d t$. [Hint: you can calculate $\int_{0}^{\infty} \frac{\sin x t}{t} d t$ for $x>0$ by the change of variable $u=x t$. Now integrate with respect to x.]

There was a mistake in setting this question. The question I intended to set was:
(b) $\int_{0}^{\infty} \frac{\cos a t-\cos b t}{t^{2}} d t$ for $0<a<b$. [Hint: you can calculate $\int_{0}^{\infty} \frac{\sin x t}{t} d t$ for $x>0$ by the change of variable $u=x t$. Now integrate with respect to x.]

The question I actually set is the $a=0, b=1$ case of this question. The solution to the question I intended to set is:
Applying the change of variable $u=x t$, we get $\int_{0}^{\infty} \frac{\sin x t}{t} d t=\int_{0}^{\infty} \frac{\sin u}{u} d u=$ $\frac{\pi}{2}$ for all $x>0$. The change of variable $u=x t$ also makes it clear that the convergence of the integral is uniform in x, for $x \geqslant a$ as for larger values of x, the integral converges more quickly. Therefore, we can change the order of integration to get

$$
\begin{gathered}
\int_{0}^{\infty} \frac{\cos a t-\cos b t}{t^{2}} d t=\int_{0}^{\infty} \int_{a}^{b} \frac{\sin x t}{t} d x d t=\int_{a}^{b} \int_{0}^{\infty} \frac{\sin x t}{t} d t d x=\int_{a}^{b} \frac{\pi}{2} d x \\
=\frac{(b-a) \pi}{2}
\end{gathered}
$$

However, the convergence is not uniform as $a \rightarrow 0$, so this won't give the solution to the problem that I actually set. In fact, because the error term $\int_{0}^{\infty} \frac{1-\cos a t}{t^{2}} d t$ is bounded by $\int_{0}^{R} \frac{a}{2} d t+\int_{R}^{\infty} \frac{2}{t^{2}}$, we can show that it does tend to 0 as $a \rightarrow 0^{+}$, and therefore, deduce that $\int_{0}^{\infty} \frac{1-\cos t}{t^{2}} d t=\frac{\pi}{2}$, but this was not something I expected you to notice.

4 Do the following series converge? Justify your answers.
(a) $\sum_{n=1}^{\infty} \frac{1 \times 5 \times 9 \times \cdots \times(4 n+1)}{3 \times 7 \times 11 \times \cdots \times(4 n+3)}$

The numerator of the fraction is $\frac{4^{n+1} \Gamma\left(n+\frac{5}{4}\right)}{\Gamma\left(\frac{1}{4}\right)}$, while the denominator is $\frac{4^{n+1} \Gamma\left(n+\frac{7}{4}\right)}{\Gamma\left(\frac{3}{4}\right)}$. Therefore, the series is

$$
\frac{\Gamma\left(\frac{3}{4}\right)}{\Gamma\left(\frac{1}{4}\right)} \sum_{n=0}^{\infty} \frac{\Gamma\left(n+\frac{5}{4}\right)}{\Gamma\left(n+\frac{7}{4}\right)}
$$

As $n \rightarrow \infty$, the ratio of gamma functions is approximately $n^{-\frac{1}{2}}$ (By Theorem 7.57). Therefore, the series diverges by comparison to $\sum_{n=1}^{\infty} n^{-\frac{1}{2}}$.
(b) $\sum_{n=1}^{\infty} \frac{(2 n)!^{4}}{(4 n)!(n!)^{4}}$

Using Stirling's formula, the fractions being summed are approximately

$$
\frac{\left((2 n)^{2 n+\frac{1}{2}}\right)^{4} e^{8 n}}{(4 n)^{4 n+\frac{1}{2}}\left(n^{n+\frac{1}{2}}\right)^{4} e^{8 n}}
$$

This cancels to $\frac{4}{n^{\frac{1}{2}}}$, so the series diverges by comparison to $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{2}}}$.

