MATH 3090, Advanced Calculus I
 Fall 2006

Toby Kenney
Homework Sheet 7
Model Soultions
1 Find the Fourier coefficients for the following functions. You may use either $f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}$ or $f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x+b_{n} \sin n x$. (a) $f(x)=\left\{\begin{array}{ll}-1 & \text { if }(2 n-1) \pi<x \leqslant 2 n \pi \\ 1 & \text { if } 2 n \pi<x \leqslant(2 n+1) \pi\end{array}\right.$ for any integer n.
f is an odd function, so the a_{n} will all be 0 . The b_{n} are given by

$$
\begin{aligned}
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x & =\frac{1}{\pi} \int_{0}^{\pi} \sin n x d x-\frac{1}{\pi} \int_{-\pi}^{0} \sin n x d x=\frac{2}{\pi} \int_{0}^{\pi} \sin n x d x \\
& = \begin{cases}\frac{4}{n \pi} & \text { if } n \text { is odd } \\
0 & \text { if } n \text { is even }\end{cases}
\end{aligned}
$$

Therefore, the Fourier series is $\sum_{n=0}^{\infty} \frac{4 \sin (2 n+1) x}{2 n+1}$.
(b) $f(x)=y^{3}$ where y is the value of $x-2 n \pi$ with smallest modulus, and $f((2 n+1) \pi)=0$ (so $f(x)=x^{3}$ for $-\pi<x<\pi$, and f is 2π-periodic).
f is an odd function, so all the a_{n} are 0 . We calculate the b_{n} as follows:

$$
\begin{gathered}
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} x^{3} \sin n x d x=\frac{1}{\pi}\left(\left[\frac{-x^{3} \cos n x}{n}\right]_{-\pi}^{\pi}+\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{3 x^{2} \cos n x}{n} d x\right) \\
=(-1)^{n+1} \frac{2 \pi^{2}}{n}+\frac{1}{\pi}\left[\frac{3 x^{2} \sin n x}{n^{2}}\right]_{-\pi}^{\pi}-\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{6 x \sin n x}{n^{2}} d x \\
=(-1)^{n+1} \frac{2 \pi^{2}}{n}+\frac{1}{\pi}\left[\frac{6 x \cos n x}{n^{3}}\right]_{-\pi}^{\pi}-\int_{-\pi}^{\pi} \frac{6 \cos n x}{n^{3}} d x=\frac{(-1)^{n+1} 2 \pi^{2}}{n}+\frac{(-1)^{n} 12}{n^{3}}
\end{gathered}
$$

So $f(x)=\sum_{n=1}^{\infty}(-1)^{n} \frac{12-2 \pi^{2} n^{2}}{n^{3}} \sin n x d x$.

2 (a) Show that $f(x)$ given by $f(x)=x^{4}$ on $[-\pi, \pi)$, and f is 2π-periodic, has Fourier series $f(x)=\frac{\pi^{4}}{5}+\sum_{n=1}^{\infty}(-1)^{n} 8\left(\frac{\pi^{2}}{n^{2}}-\frac{6}{n^{4}}\right) \cos n x$.
f is an even function, so the b_{n} are all 0 . We calculate the a_{n} by integrating by parts. $a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} x^{4} d x=\frac{2 \pi^{4}}{5}$.

$$
\int_{-\pi}^{\pi} x^{4} \cos n x=\left[\frac{x^{4} \sin n x}{n}\right]_{-\pi}^{\pi}-\int_{-\pi}^{\pi} \frac{4 x^{3} \sin n x}{n} d x
$$

but $\sin n \pi=0$, so the first term is 0 , leaving

$$
-\int_{-\pi}^{\pi} \frac{4 x^{3} \sin n x}{n} d x=\left[\frac{4 x^{3} \cos n x}{n^{2}}\right]_{-\pi}^{\pi}-\int_{-\pi}^{\pi} \frac{12 x^{2} \cos n x}{n^{2}} d x
$$

Here the first term is $(-1)^{n} \frac{8 \pi^{3}}{n^{2}}$, and

$$
\int_{-\pi}^{\pi} \frac{12 x^{2} \cos n x}{n^{2}} d x=\left[\frac{12 x^{2} \sin n x}{n^{3}}\right]_{-\pi}^{\pi}-\int_{-\pi}^{\pi} \frac{24 x \sin n x}{n^{3}} d x
$$

Again, the first term is 0 , so we just need to evaluate

$$
\int_{-\pi}^{\pi} \frac{24 x \sin n x}{n^{3}} d x=\left[\frac{24 x \cos n x}{n^{4}}\right]_{-\pi}^{\pi}-\int_{-\pi}^{\pi} \frac{24 \sin n x}{n^{4}} d x
$$

We know the integral is 0 , while the first term is $\frac{(-1)^{n} 48 \pi}{n^{4}}$. Therefore, $f(x)=\frac{\pi^{4}}{5}+\sum_{n=1}^{\infty}(-1)^{n} 8\left(\frac{\pi}{n^{2}}-\frac{6}{n^{4}}\right) \cos n x$.
(b) Deduce that $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{4}}=-\frac{7 \pi^{4}}{720}$ (You may assume that $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}=$ $\left.-\frac{\pi^{2}}{12}\right)$.

Comparing $f(x)$ with its Fourier series when $x=0$, we see that $0=\frac{\pi^{4}}{5}+$ $\sum_{n=1}^{\infty}(-1)^{n} 8\left(\frac{\pi^{2}}{n^{2}}-\frac{6}{n^{4}}\right) \cos 0$. Therefore, $\sum_{n=1}^{\infty}(-1)^{n} \frac{\pi^{2}}{n^{2}}-\sum_{n=1}^{\infty}(-1)^{n} \frac{6}{n^{4}}=$ $-\frac{\pi^{4}}{40}$. However, we know that $\sum_{n=1}^{\infty}(-1)^{n} \frac{\pi^{2}}{n^{2}}=-\frac{\pi^{4}}{12}$, so we have $\sum_{n=1}^{\infty}(-1)^{n} \frac{6}{n^{4}}=$ $\frac{\pi^{4}}{40}-\frac{\pi^{4}}{12}=-\frac{7 \pi^{4}}{120}$, and $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n^{4}}=-\frac{7 \pi^{4}}{720}$.

3 Suppose $f(x)$ is a 2π-periodic function with Fourier series $f(x)=\frac{1}{2} a_{0}+$ $\sum_{n=0}^{\infty} a_{n} \cos ((4 n+1) x)$. Express the function $g(x)$ whose Fourier series is $g(x)=\frac{1}{2} a_{0} \cos x-\frac{1}{2} a_{0} \sin x+\sum_{n=0}^{\infty} a_{n} \cos ((4 n+2) x)$ in terms of $f(x)$. [Hint: $\cos ((4 n+2) x)=\cos x \cos ((4 n+1) x)-\sin x \sin ((4 n+1) x)$, and $\left.\sin ((4 n+1) x)=\cos (4 n+1)\left(x-\frac{\pi}{2}\right).\right]$

We know that $\cos ((4 n+2) x)=\cos x \cos ((4 n+1) x)-\sin x \sin (4 n+1) x$, and that $\sin (4 n+1) x=\cos (4 n+1)\left(x-\frac{\pi}{2}\right)$. Therefore,

$$
\begin{gathered}
g(x)=\frac{1}{2} a_{0} \cos x-\frac{1}{2} a_{0} \sin x+\sum_{n=0}^{\infty} \cos x \cos (4 n+1) x- \\
\sum_{n=0}^{\infty} \sin x \cos (4 n+1)\left(x-\frac{\pi}{2}\right)=f(x) \cos x-f\left(x-\frac{\pi}{2}\right) \sin x
\end{gathered}
$$

