MATH 3090, Advanced Calculus I
 Fall 2006

Toby Kenney
Homework Sheet 8
Model Solutions
1 Recall that the Fourier series for $f(x)=x$ when $-\pi \leqslant x<\pi$, and f 2π-periodic is $2 \sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin n x}{n}$. By integrating this 4 times, find the Fourier series for $g(x)=\frac{x^{5}}{120}-\frac{\pi^{2} x^{3}}{36}+\frac{7 \pi^{4} x}{360}$. [Remember to add the constant terms.]
$\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{x^{2}}{2} d x=\frac{\pi^{2}}{6}$, so the Fourier series for $\frac{x^{2}}{2}-\frac{\pi^{2}}{6}$ is the integral of the Fourier series for x, so it is $2 \sum_{n=1}^{\infty}(-1)^{n} \frac{\cos n x}{n^{2}}$. By integrating again, $\frac{x^{3}}{6}-\frac{\pi^{2} x}{6}=2 \sum_{n=1}^{\infty}(-1)^{n} \frac{\sin n x}{n^{3}}$. Now $\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\frac{x^{4}}{24}-\frac{\pi^{2} x^{2}}{12}\right) d x=\frac{-7 \pi^{4}}{360}$, so by integrating again, we get $\frac{x^{4}}{24}-\frac{\pi^{2} x^{2}}{12}+\frac{7 \pi^{4}}{360}=2 \sum_{n=0}^{\infty}(-1)^{n+1} \frac{\cos n x}{n^{4}}$. By integrating once more, we get $\frac{x^{5}}{120}-\frac{\pi^{2} x^{3}}{36}+\frac{7 \pi^{4} x}{360}=2 \sum_{n=0}^{\infty}(-1)^{n+1} \frac{\sin n x}{n^{5}}$.

2 Find the Fourier sine and cosine series for the following functions on the interval $[0, \pi]$.
(a) $f(x)=e^{x}$ [Hint: $\cos n x=\frac{e^{i n x}+e^{-i n x}}{2}, \sin n x=\frac{e^{i n x}-e^{-i n x}}{2 i}$.]

$$
\begin{array}{r}
\int_{0}^{\pi} e^{x} \sin n x d x=\int_{0}^{\pi} \frac{e^{(1+n i) x}-e^{(1-n i) x}}{2 i} d x=\frac{1}{2 i}\left(\left[\frac{e^{(1+n i) x}}{1+n i}\right]_{0}^{\pi}-\left[\frac{e^{(1-n i) x}}{1-n i}\right]_{0}^{\pi}\right) \\
=\frac{1}{2 i\left(1+n^{2}\right)}\left((1-n i)\left(e^{\pi} e^{n i \pi}-1\right)-(1+n i)\left(e^{\pi} e^{-n i \pi}\right)\right) \\
=\frac{1}{2 i\left(1+n^{2}\right)}\left(2 n i+e^{\pi}\left((1-n i) e^{n i \pi}-(1+n i) e^{-n i \pi}\right)\right) \\
=\frac{n}{1+n^{2}}+e^{\pi}\left(\frac{\left(e^{n i \pi}-e^{-n i \pi}\right)-n i\left(e^{n i \pi}+e^{-n i \pi}\right)}{2 i\left(1+n^{2}\right)}\right) \\
=\frac{n+e^{\pi}(\sin n \pi-n \cos n \pi)}{1+n^{2}}=\frac{n\left(1+(-1)^{n+1} e^{\pi}\right)}{1+n^{2}}
\end{array}
$$

Therefore, the Fourier sine series for e^{x} on $[0, \pi]$ is $e^{x}=\sum_{n=1}^{\infty} \frac{2 n\left(1+(-1)^{n+1} e^{\pi}\right)}{\pi\left(1+n^{2}\right)} \sin n x$.
Similarly,

$$
\int_{0}^{\pi} e^{x} \cos n x d x=\int_{0}^{\pi} \frac{e^{(1+n i) x}+e^{(1-n i) x}}{2} d x=\frac{1}{2}\left(\left[\frac{e^{(1+n i) x}}{1+n i}\right]_{0}^{\pi}+\left[\frac{e^{(1}}{1}\right.\right.
$$

$$
\begin{array}{r}
\begin{array}{r}
=\frac{1}{2\left(1+n^{2}\right)}\left((1-n i)\left(e^{\pi} e^{n i \pi}-1\right)+(1+n i)\left(e^{\pi} e^{-}\right.\right. \\
\\
=\frac{1}{2\left(1+n^{2}\right)}\left(e ^ { \pi } \left((1-n i) e^{n i \pi}+(1+n i) e^{-}\right.\right. \\
=e^{\pi}\left(\frac{\left(e^{n i \pi}+e^{-n i \pi}\right)-n i\left(e^{-n i \pi}-e^{-n i \pi}\right)}{2\left(1+n^{2}\right)}\right)-\frac{1}{1+n^{2}}=e^{\pi}\left(\frac{\cos n \pi+n \sin (-n \pi)}{1+n^{2}}\right)-\frac{1}{1+n^{2}}=\frac{(-}{}
\end{array} .
\end{array}
$$

Therefore, the Fourier cosine series for e^{x} on $[0, \pi]$ is $e^{x}=\frac{e^{\pi}-1}{\pi}+\sum_{n=1}^{\infty} \frac{2\left((-1)^{n} e^{\pi}-1\right)}{\pi\left(1+n^{2}\right)} \cos n x$.
(b) $f(x)=\sin \left(x+\frac{\pi}{3}\right)$.
$\sin \left(x+\frac{\pi}{3}\right)=\sin x \cos \frac{\pi}{3}+\cos x \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2} \sin x+\frac{1}{2} \cos x$. Now for $n \geqslant 2$,
$\int_{0}^{\pi} \sin x \cos n x d x=\int_{0}^{\pi} \frac{1}{2}(\sin (n+1) x-\sin (n-1) x) d x= \begin{cases}0 & \text { if } n \text { is odd } \\ \frac{1}{n+1}-\frac{1}{n-1} & \text { if } n \text { is even }\end{cases}$
and
$\int_{0}^{\pi} \cos x \sin n x d x=\int_{0}^{\pi} \frac{1}{2}(\sin (n+1) x+\sin (n-1) x) d x= \begin{cases}0 & \text { if } n \text { is odd } \\ \frac{1}{n+1}+\frac{1}{n-1} & \text { if } n \text { is even }\end{cases}$
On the other hand, $\int_{0}^{\pi} \sin x \sin n x d x=0$ when $n \neq 1$, and $\int_{0}^{\pi} \cos x \cos n x=$ 0 when $x \neq 1$.
Therefore, $f(x)=\frac{\sqrt{3}}{2} \sin x+\sum_{n=1}^{\infty}\left(\frac{1}{2 n+1}+\frac{1}{2 n-1}\right) \frac{2 \sin 2 n x}{\pi}$, is the sine series for f, and $f(x)=\frac{1}{2} \cos x+\sum_{n=1}^{\infty}\left(\frac{1}{2 n+1}-\frac{1}{2 n-1}\right) \frac{\sqrt{3} \cos 2 n x}{\pi}$ is the cosine series.

3 Define f by $f(x)=\sum_{n=1}^{\infty} \frac{\sin n x}{\sqrt{n}}$. (This converges for all x by Dirichlet's test - see Corollary 6.27.)
(a) Show that the series converges uniformly on the intervals (δ, π) and $(-\pi,-\delta)$ for any $\delta>0$. (This means that f is a continuous function everywhere except perhaps at integer multiples of π.)

Examining the proof of Dirichlet's test (Theorem 6.25), we see that the rate of convergence depends only on the rate of convergence of the sequence a_{n}, and on the bound C. Therefore, If we let $a_{n}=\frac{1}{n}$, and $b_{n}(x)=\sin n x$, then by Lemma 6.26,

$$
\begin{gathered}
\left|\sum_{n=0}^{N} b_{n}(x)\right|=\left|\frac{\sin \frac{(k+1) x}{2} \sin \frac{k x}{2}}{\sin \frac{x}{2}}\right| \\
\leqslant \frac{1}{\sin \frac{x}{2}} \leqslant \frac{1}{\sin \frac{\delta}{2}}
\end{gathered}
$$

Therefore, the convergence is uniform on (δ, π) by Dirichlet's test.
By subtracting off a multiple of the square wave $\left(h(x)=\left\{\begin{array}{ll}-1 & \text { if }(2 n-1) \pi<x \leqslant 2 n \pi \\ 1 & \text { if } 2 n \pi<x \leqslant(2 n+1) \pi\end{array}\right)\right.$ and a multiple of the sawtooth wave $(s(x)=x$ for $-\pi<x \leqslant \pi$, and 2π periodic) from f, we get a function g that is continuous at all x.
(b) Show that g is not piecewise continuously differentiable. [Hint: if it were piecewise continuously differentiable, what would the Fourier coefficients have to be? Use Bessel's inequality to show that these cannot be the Fourier coefficients of a piecewise continuous function.]

If f were piecewise continuously differentiable, then its derivative f^{\prime} would have Fourier coefficients $a_{n}^{\prime}=n b_{n}=\sqrt{n}$ so g^{\prime} will have Fourier coefficients $\sqrt{n}+\alpha_{n}(n \geqslant 1)$ where α_{n} is the term that comes from the multiple of the square wave and the sawtooth wave that we subtracted from $f . \alpha_{n}$ is bounded for all n, since the Fourier coefficients of the sawtooth and the square waves decay like $\frac{1}{n}$. However, these a_{n}^{\prime} do not satisfy Bessel's inequality $\left(\sum_{n=0}^{\infty}\left|c_{n}^{\prime}\right|^{2} \leqslant \int_{-\pi}^{\pi}\left|f^{\prime}(x)\right|^{2} d x\right)$. Therefore, they are not the Fourier coefficients of a piecewise continuous 2π-periodic function.

