MATH 3090, Advanced Calculus I Fall 2006 Toby Kenney Homework Sheet 8

Model Solutions

1 Recall that the Fourier series for f(x) = x when $-\pi \leq x < \pi$, and $f 2\pi$ -periodic is $2\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sin nx}{n}$. By integrating this 4 times, find the Fourier series for $g(x) = \frac{x^5}{120} - \frac{\pi^2 x^3}{36} + \frac{7\pi^4 x}{360}$. [Remember to add the constant terms.]

 $\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{x^2}{2} dx = \frac{\pi^2}{6}, \text{ so the Fourier series for } \frac{x^2}{2} - \frac{\pi^2}{6} \text{ is the integral of the Fourier series for } x, \text{ so it is } 2\sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}.$ By integrating again, $\frac{x^3}{6} - \frac{\pi^2 x}{6} = 2\sum_{n=1}^{\infty} (-1)^n \frac{\sin nx}{n^3}.$ Now $\frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\frac{x^4}{24} - \frac{\pi^2 x^2}{12}\right) dx = \frac{-7\pi^4}{360},$ so by integrating again, we get $\frac{x^4}{24} - \frac{\pi^2 x^2}{12} + \frac{7\pi^4}{360} = 2\sum_{n=0}^{\infty} (-1)^{n+1} \frac{\cos nx}{n^4}.$ By integrating once more, we get $\frac{x^5}{120} - \frac{\pi^2 x^3}{36} + \frac{7\pi^4 x}{360} = 2\sum_{n=0}^{\infty} (-1)^{n+1} \frac{\sin nx}{n^5}.$

2 Find the Fourier sine and cosine series for the following functions on the interval $[0, \pi]$.

(a) $f(x) = e^x$ [Hint: $\cos nx = \frac{e^{inx} + e^{-inx}}{2}$, $\sin nx = \frac{e^{inx} - e^{-inx}}{2i}$.]

$$\begin{split} \int_0^\pi e^x \sin nx dx &= \int_0^\pi \frac{e^{(1+ni)x} - e^{(1-ni)x}}{2i} dx = \frac{1}{2i} \left(\left[\frac{e^{(1+ni)x}}{1+ni} \right]_0^\pi - \left[\frac{e^{(1-ni)x}}{1-ni} \right]_0^\pi \right) \\ &= \frac{1}{2i(1+n^2)} \left((1-ni) \left(e^\pi e^{ni\pi} - 1 \right) - (1+ni) \left(e^\pi e^{-ni\pi} \right) \right) \\ &= \frac{1}{2i(1+n^2)} \left(2ni + e^\pi \left((1-ni)e^{ni\pi} - (1+ni)e^{-ni\pi} \right) \right) \\ &= \frac{n}{1+n^2} + e^\pi \left(\frac{\left(e^{ni\pi} - e^{-ni\pi} \right) - ni \left(e^{ni\pi} + e^{-ni\pi} \right)}{2i(1+n^2)} \right) \\ &= \frac{n + e^\pi \left(\sin n\pi - n \cos n\pi \right)}{1+n^2} = \frac{n \left(1 + (-1)^{n+1} e^\pi \right)}{1+n^2} \end{split}$$

Therefore, the Fourier sine series for e^x on $[0, \pi]$ is $e^x = \sum_{n=1}^{\infty} \frac{2n(1+(-1)^{n+1}e^{\pi})}{\pi(1+n^2)} \sin nx$. Similarly,

$$\int_0^\pi e^x \cos nx dx = \int_0^\pi \frac{e^{(1+ni)x} + e^{(1-ni)x}}{2} dx = \frac{1}{2} \left(\left[\frac{e^{(1+ni)x}}{1+ni} \right]_0^\pi + \left[\frac{e^{(1-ni)x}}{1+ni} \right]_0^\pi + \left[\frac{e^{(1-ni)x}}{1+ni}$$

$$= \frac{1}{2(1+n^2)} \left((1-ni) \left(e^{\pi} e^{ni\pi} - 1 \right) + (1+ni) \left(e^{\pi} e^{\pi} e^{ni\pi} - 1 \right) \right)$$
$$= \frac{1}{2(1+n^2)} \left(e^{\pi} \left((1-ni)e^{ni\pi} + (1+ni)e^{\pi} e^{\pi} e^{\pi} e^{\pi} \left(\frac{(e^{ni\pi} + e^{-ni\pi}) - ni \left(e^{-ni\pi} - e^{-ni\pi} \right)}{2(1+n^2)} \right) - \frac{1}{1+n^2} = e^{\pi} \left(\frac{\cos n\pi + n \sin(-n\pi)}{1+n^2} \right) - \frac{1}{1+n^2} = \frac{(-ni\pi)^2}{1+n^2} = \frac{(-ni\pi)^2}{$$

Therefore, the Fourier cosine series for e^x on $[0, \pi]$ is $e^x = \frac{e^{\pi} - 1}{\pi} + \sum_{n=1}^{\infty} \frac{2((-1)^n e^{\pi} - 1)}{\pi(1 + n^2)} \cos nx$.

(b)
$$f(x) = \sin\left(x + \frac{\pi}{3}\right)$$
.

 $\sin\left(x+\frac{\pi}{3}\right) = \sin x \cos \frac{\pi}{3} + \cos x \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x.$ Now for $n \ge 2$,

$$\int_0^\pi \sin x \cos nx \, dx = \int_0^\pi \frac{1}{2} \left(\sin(n+1)x - \sin(n-1)x \right) \, dx = \begin{cases} 0 & \text{if } n \text{ is odd} \\ \frac{1}{n+1} - \frac{1}{n-1} & \text{if } n \text{ is even} \end{cases}$$

and

$$\int_0^\pi \cos x \sin nx \, dx = \int_0^\pi \frac{1}{2} \left(\sin(n+1)x + \sin(n-1)x \right) \, dx = \begin{cases} 0 & \text{if } n \text{ is odd} \\ \frac{1}{n+1} + \frac{1}{n-1} & \text{if } n \text{ is even} \end{cases}$$

On the other hand, $\int_0^{\pi} \sin x \sin nx dx = 0$ when $n \neq 1$, and $\int_0^{\pi} \cos x \cos nx = 0$ when $x \neq 1$.

Therefore, $f(x) = \frac{\sqrt{3}}{2} \sin x + \sum_{n=1}^{\infty} \left(\frac{1}{2n+1} + \frac{1}{2n-1}\right) \frac{2\sin 2nx}{\pi}$, is the sine series for f, and $f(x) = \frac{1}{2} \cos x + \sum_{n=1}^{\infty} \left(\frac{1}{2n+1} - \frac{1}{2n-1}\right) \frac{\sqrt{3} \cos 2nx}{\pi}$ is the cosine series.

3 Define f by $f(x) = \sum_{n=1}^{\infty} \frac{\sin nx}{\sqrt{n}}$. (This converges for all x by Dirichlet's test – see Corollary 6.27.)

(a) Show that the series converges uniformly on the intervals (δ, π) and $(-\pi, -\delta)$ for any $\delta > 0$. (This means that f is a continuous function everywhere except perhaps at integer multiples of π .)

Examining the proof of Dirichlet's test (Theorem 6.25), we see that the rate of convergence depends only on the rate of convergence of the sequence a_n , and on the bound C. Therefore, If we let $a_n = \frac{1}{n}$, and $b_n(x) = \sin nx$, then by Lemma 6.26,

$$\left|\sum_{n=0}^{N} b_n(x)\right| = \left|\frac{\sin\frac{(k+1)x}{2}\sin\frac{kx}{2}}{\sin\frac{x}{2}}\right|$$
$$\leqslant \frac{1}{\sin\frac{x}{2}} \leqslant \frac{1}{\sin\frac{\delta}{2}}$$

Therefore, the convergence is uniform on (δ, π) by Dirichlet's test.

By subtracting off a multiple of the square wave $(h(x) = \begin{cases} -1 & \text{if } (2n-1)\pi < x \leq 2n\pi \\ 1 & \text{if } 2n\pi < x \leq (2n+1)\pi \end{cases}$) and a multiple of the sawtooth wave $(s(x) = x \text{ for } -\pi < x \leq \pi, \text{ and } 2\pi - periodic)$ from f, we get a function g that is continuous at all x.

(b) Show that g is not piecewise continuously differentiable. [Hint: if it were piecewise continuously differentiable, what would the Fourier coefficients have to be? Use Bessel's inequality to show that these cannot be the Fourier coefficients of a piecewise continuous function.]

If f were piecewise continuously differentiable, then its derivative f' would have Fourier coefficients $a'_n = nb_n = \sqrt{n}$ so g' will have Fourier coefficients $\sqrt{n} + \alpha_n \ (n \ge 1)$ where α_n is the term that comes from the multiple of the square wave and the sawtooth wave that we subtracted from f. α_n is bounded for all n, since the Fourier coefficients of the sawtooth and the square waves decay like $\frac{1}{n}$. However, these a'_n do not satisfy Bessel's inequality $(\sum_{n=0}^{\infty} |c'_n|^2 \le \int_{-\pi}^{\pi} |f'(x)|^2 dx)$. Therefore, they are not the Fourier coefficients of a piecewise continuous 2π -periodic function.