
MATH 3090, Advanced Calculus I
Fall 2006

Toby Kenney
Homework Sheet 9
Model Solutions

Compulsory questions

1 An rod of length π and 0 thickness is heated to a uniform 100◦C at time
0. The ends of the rod are then immersed in ice, to fix their temperature
at 0◦C.

(a) When the temperature in the middle of the rod (x = π
2 ) reaches

400
π ×

(
1
2 −

1
3×29

)◦
C, show that the temperature at the point one third

of the way along the rod (x = π
3 ) is at most 100

√
3

π

◦
C. [Hint: Both the

temperature in the middle of the rod, and the temperature one third of the
way along the rod can be expressed as alternating series (you have to com-
bine some terms) with terms decreasing in modulus. Recall that if a series
is alternating and its terms have decreasing modulus, then the partial sums
give alternately lower and upper bounds for the whole sum. You should be
able to show that e−kt 6 1

2 .]

The temperature satisfies the heat equation ut = −kuxx and the boundary
conditions u(0, t) = u(π, t) = 0, and the initial condition u(0, x) = 100.
The solution is therefore

u(t, x) =
∞∑

n=1

ane−kn2t sin(nt)

where the an are the Fourier coefficients of the sine series for the constant

function 100. Therefore, an = 2
π

∫ π

0
100 sinnxdx =

{
400
πn if n is odd
0 if n is even ,

so the temperature in the middle of the rod at time t is 400
π

∑∞
n=0

(−1)ne−(2n+1)2kt

2n+1 .
This is an alternating series whose terms have decreasing modulus, so it
is at least 400

π

(
e−kt − (e−kt)9

3

)
, so when it reaches 400

π ×
(

1
2 −

1
3×29

)
, we

must have that e−kt 6 1
2 . (Since if f(x) = x − x9

3 , then we have that
f(e−kt) 6 f

(
1
2

)
, and f has only one local maximum in [0, 1], and it is

more than 1
2 , and f(1) > f

(
1
2

)
, so if f(x) 6 f

(
1
2

)
, then we must have

x 6 1
2 .)

Similarly, the temperature at the point one third of the way along the rod
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at time t is 400
π

∑∞
n=0

e−(2n+1)2kt sin(2n+1)x
(2n+1) , but

sin(2n + 1)
π

3
=


√

3
2 if n = 3m

0 if n = 3m + 1
−
√

3
2 if n = 3m + 2

so the temperature is 400
√

3
2π

∑∞
m=0

(
e−(6m+1)kt

6m+1 − e−(6m+5)kt

6m+5

)
. This is an

alternating series, so it is at most the first term, which is 400
√

3
2π × e−kt 6

100
√

3
π .

(b) Show that once the e−4kt 6 1
2 , the temperature never gets below 0◦C

anywhere on the rod. (This is true for all positive time, but it is easier
to show if we make the assumption that e−4kt 6 1

2 .) [Hint: show that by
this time, the first term of the Fourier series solution is larger in modulus
than the sum of the moduli of all the others. This term is positive for all
x 6= 0, π, so the temperature must be non-negative for all x 6= 0, π. You
may assume that

∣∣ sin kx
sin x

∣∣ 6 k for all integers k.]

The temperature u(x, t) is given by u(x, t) = 400
π

∑∞
n=0

e−(2n+1)2kt sin(2n+1)x
2n+1 ,

so the first term is e−kt sinx, and for the subsequent terms: |e−(2n+1)2kt sin(2n+
1)x| 6 e−(2n+1)2kt(2n+1) sinx. Therefore, the sum of terms after the first
has modulus at most

e−kt sinx
∞∑

n=1

e−4n2kt 6 e−kt sinx
∞∑

n=1

e−4nkt =
(
e−kt sinx

) e−4kt

1− e−4kt

Since e−4kt 6 1
2 , we have that e−4kt

1−e−4kt 6 1, so the first term is at least as
large as the sum of the others, and the first term is non-negative for all x,
so the sum can never be negative.

2 A guitar string is plucked by pulling the part of the string with x coordinate
a a distance 1 upwards. The equation for the string is therefore

f(x) =
{

x
a if 0 6 x 6 a
π−x
π−a if a 6 x 6 π

where f(x) is the vertical displacement of the string at point x. It is
released from rest in this position at time 0 (so u(x, 0) = f(x), ut(x, 0) =
0).

(a) Assuming that the Fourier series solution (8.37) does indeed model
the future behaviour of the string, calculate the Fourier coefficients bn of
cos nt sinnx as functions of a.
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bn = 2
π

(∫ a

0
x sin nx

a dx +
∫ π

a
(π−x) sin nx

π−a dx
)
. By the change of variable y =

π = x in the second integral, this becomes 2
π

(∫ a

0
x sin nx

a dx +
∫ π−a

0
(−1)ny sin ny

π−a dx
)
.

But
∫ a

0
x sin nx

a dx = [−x cos nx
na ]a0 +

∫ a

0
cos nx

na dx = sin na
n2a − cos na

n . Therefore,

bn = 2
π

(
sin na
n2a − cos na

n + sin n(π−a)
n2(π−a) − cos n(π−a)

n

)
. However, sin(π − a) =

sin a and cos(π − a) = − cos a, so this expression simplifies to bn =
2 sin na

πn2

(
1
a + 1

π−a

)
= 2 sin na

n2a(π−a) .

(b) Show that a = π
2 gives a local maximum of the coefficient b1. We will

see next week that (assuming that π
2 is the global maximum) this means

that the middle of the string is the best place to pluck it if we want to get
as close to a pure note as possible.

When n = 1, we have b1 = 2 sin a
a(π−a) . Differentiating with respect to a, we

get b′1 = 2a(π−a) cos a−2(π−2a) sin a
a2(π−a)2 . When a = π

2 , cos a = 0, and π−2a = 0,
so the numerator is 0, while the denominator is not 0, so π

2 is a critical
point of b1. To show it is a maximum, we take the second derivative: b′′1 =
2a2(π−a)2(−a(π−a) sin a+(π−2a) cos a−(π−2a) cos a+2 sin a)+4a(π−a)(π−2a)(2a(π−a) cos a−2(π−2a) sin a)

a4(π−a)4 .

When a = π
2 , this becomes

π2
2

�
−π2

4 +2
�

π8
256

, which is negative. Therefore,

a = π
2 is a local maximum for b1.

3 Suppose we modify the wave equation to account for the fact that the string
is not perfectly elastic. We use the equation:

utt = c2uxx − 2δut

where δ is a small positive constant. Assume that δ < c. Use separation
of variables to find a family of solutions to this equation that satisfy the
boundary conditions u(0, t) = u(π, t) = 0.

Suppose the solution is of the form u(x, t) = Θ(x)Φ(t) for some function Θ
and Φ. Now the equation becomes Θ(x)Φ̈(t) = c2Θ′′(x)Φ(t)−2δΘ(x)Φ̇(t).
When we divide through by Θ(x)Φ(t), we get Φ̈(t)+2δΦ̇(t)

Φ(t) = c2Θ′′(x)
Θ(x) .

As in the case without damping, the left-hand side depends only on
t, and the right-hand side depends only on x, so they must both be
equal to some constant α. From the right-hand side, we get that α =
−c2n2 for some n ∈ Z+. The left-hand side therefore gives the equa-
tion Φ̈(t) + 2δΦ̇(t) + c2n2Φ(t) = 0. We look for solutions to this of the
form Φ(t) = eλt for some λ ∈ C, and we get eλt

(
λ2 + 2δλ + c2n2

)
= 0.

Therefore, we get that λ = −δ ±
√

δ2 − c2n2. The solution is therefore
e−δt

(
an cos

(√
c2n2 − δ2

)
t + bn sin

(√
c2n2 − δ2

)
t
)
sinnx.
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