# MATH 2112/CSCI 2112, Discrete Structures I <br> Winter 2007 

Toby Kenney
Mock Final Examination
Time allowed: 3 hours
Calculators not permitted.
Answer all questions.
1 Use Euclid's algorithm to find the greatest common divisor of 263 and 184. Write down all the steps involved. Use your calculations to find integers $a$ and $b$ such that $263 a+184 b=(263,184)$ times the second number is their greatest common divisor.

2 Are the propositions $q \rightarrow(p \rightarrow r)$ and $p \rightarrow(q \rightarrow r)$ logically equivalent? Justify your answer.

3 Which of the following are true when $A=\{1,2,8\}$ and $B=\{0,4,5,9,17\}$ ? Justify your answers.
(a) $(\forall x \in B)(x+1 \in B)$
(b) $(\exists x \in A)(x+3 \in A)$
(c) $(\forall x \in A)(\exists y \in B)(\forall z \in A)(x+y+z$ is prime $)$

4 Use universal instantiation and rules of inference to show that the following argument is valid:

$$
\begin{gathered}
(\forall x \in A)(\neg(x \in B)) \\
(y \in A \vee y \in C) \wedge(y \in B \vee y \in C) \\
\therefore y \in C
\end{gathered}
$$

5 Prove or disprove the following. You may use results proved in the course or the homework sheets, provided you state them clearly.
(a) There is a natural number $n$ such that $n^{2}+5 n-6$ is prime.
(b) $2^{19}+3^{8}+7^{84}$ is divisible by 5 .

6 Find $0 \leqslant n<770$ satisfying all the following congruences:

$$
\begin{align*}
n & \equiv 4(\bmod 11)  \tag{1}\\
n & \equiv 2(\bmod 14)  \tag{2}\\
n & \equiv 3(\bmod 5) \tag{3}
\end{align*}
$$

7 Solve the following recurrence relations:
(a) $a_{n}=a_{n-1}+2 a_{n-2}, a_{0}=1, a_{1}=3$.
(b) $a_{n}=6 a_{n-1}-9 a_{n-2}, a_{0}=0, a_{1}=4$.
(c) $a_{n}=2 a_{n-1}+3, a_{0}=3$.

8 Show by induction on $n$ that if $A$ is a set of $n$ elements, then its power set $\mathcal{P}(A)$ has $2^{n}$ elements. [Hint: let $a \in A$, and consider $\mathcal{P}(A)$ as the union of the set of subsets of $A$ that contain $a$, and the set of subsets of $A$ that don't contain a.]

9 Let $A=\{0,1,3,7\}, B=\{1,2,7,8\}$. What are:
(i) $A \cup B$ ?
(ii) $A \cap B$ ?
(iii) $A \times B$ ?
(iv) $B \backslash A$ ?

10 Let $A, B$, and $C$ be sets such that $|A|=7,|B|=9,|C|=17,|A \cap B|=4$, $|A \cap C|=3,|B \cap C|=7$, and $|A \cup B \cup C|=21$. What are the possible values for $|A \cap B \cap C|$ ?

11 For each of the following relations, determine which of the properties: reflexivity, symmetry, transitivity, and antisymmetry hold:
(a) The relation $R$ on the set of all sets given by $A R B$ if and only if $\emptyset \in A \wedge \emptyset \in B$.
(b) The relation $R$ on the set of natural numbers given by $n R m$ if and only if $n \mid m$.
(c) The relation $R$ on the set of all natural numbers given by $m R n$ if and only if $m$ is odd and $n$ is even.
(d) The relation $R$ on the set of rational numbers given by $q R r$ if $q=\frac{a}{b}$, $r=\frac{c}{d}$ with $(a, b)=(c, d)=1, a, b, c, d \in \mathbb{Z}^{+}$and $a d<b$.

12 (a) Which of the following functions are injective? (b) Which are surjective?
(i) $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}, f(x)=x^{2}$.
(ii) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{2}$.
(iii) $f: \mathbb{N} \rightarrow\{0,1\}, f(n)=\left\{\begin{array}{ll}0 & \text { if } n \text { is prime } \\ 1 & \text { otherwise }\end{array}\right.$.
(iv) $f: \mathbb{Q} \rightarrow \mathbb{R}, f(x)=2 x$.

13 Show by strong induction that every positive integer congruent to 2 modulo 3 is divisible by a (positive) prime number congruent to 2 modulo 3.

14 Show that it is not possible to write a computer program which takes as input a computer program $P$, and some value $X$, and determines whether the programs $P$ eventually finishes when given input $X$.

15 Consider the following algorithm, called a bubble sort for sorting a list $a[1], a[2], \ldots, a[n]$ of length $n$.

```
Algorithm 1 Bubble Sort
Input: List \(a[1], a[2], \ldots, a[n]\)
Output: Sorted list \(a[1], a[2], \ldots, a[n]\)
    numSwaps=1
    while numSwaps \(>0\) do
        numSwaps \(=0\)
        for \(\mathrm{i}=1\) to \(\mathrm{n}-1\) do
            Compare \(a[i]\) to \(a[i+1]\)
            if \(a[i]>a[i+1]\) then
                swap a[i] and a[i+1]
                numSwaps \(=\) numSwaps +1
            end if
        end for
    end while
```

How many comparisons does it make to sort a list of length $n$ : (Give your answers in the form $\Theta(f(n))$ for some function $f$ ), justify your answers.
(a) In the best case?
(b) In the worst case? [Hint: Every time the outer loop runs, we know that for every $i<n$, there is at least one more $j>i$ with $a[j]>a[i]$.]

16 Define the function $F: \mathbb{N} \rightarrow \mathbb{N}$ recursively by:

$$
F(n)= \begin{cases}4 F\left(\frac{n}{2}\right) & \text { if } n \text { is even } \\ F(n-1)+2 n-1 & \text { if } n \text { is odd }\end{cases}
$$

and $F(0)=0$.
Find a formula for $F(n)$, and prove it.
17 Given a set $X$ of 10 natural numbers $\left\{n_{1}, \ldots, n_{10}\right\}$, for a non-empty subset $X^{\prime}$ of $X$, define $S_{X^{\prime}}=\sum_{i \in X^{\prime}} n_{i}$. show that there are two non-empty subsets $X_{0}$ and $X_{1}$ of $X$ such that $S_{X_{0}} \equiv S_{X_{1}}(\bmod 1000)$.

