
MATH 2112/CSCI 2112, Discrete Structures I
Winter 2007
Toby Kenney

Mock Final Examination
Model Solutions

Answer all questions.

1 Use Euclid’s algorithm to find the greatest common divisor of 263 and 184.
Write down all the steps involved. Use your calculations to find integers a
and b such that 263a + 184b = (263, 184) times the second number is their
greatest common divisor.

263 = 184 + 79
184 = 2× 79 + 26
79 = 3× 26 + 1
26 = 26× 1

So (263, 184) = 1. Working backwards:

1 = 79−3×26 = 79−3×(184−2×79) = 7×79−3×184 = 7×(263−184)−3×184 = 7×263−10×184

So a = 7, b = −10 works.

2 Are the propositions q → (p → r) and p → (q → r) logically equivalent?
Justify your answer.

The truth tables are as follows:
p q r p → r q → (p → r) q → r p → (q → r)
0 0 0 1 1 1 1
0 0 1 1 1 1 1
0 1 0 1 1 0 1
0 1 1 1 1 1 1
1 0 0 0 1 1 1
1 0 1 1 1 1 1
1 1 0 0 0 0 0
1 1 1 1 1 1 1

The fifth and last columns are the same, so the two propositions are logi-
cally equivalent.
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3 Which of the following are true when A = {1, 2, 8} and B = {0, 4, 5, 9, 17}?
Justify your answers.

(a) (∀x ∈ B)(x + 1 ∈ B)

This is false. For example, 17 ∈ B, but 17 + 1 = 18 6∈ B.

(b) (∃x ∈ A)(x + 3 ∈ A)

This is false. For x = 1, x + 3 = 4 6∈ A; for x = 2, x + 3 = 5 6∈ A, and for
x = 8, x + 3 = 11 6∈ A.

(c) (∀x ∈ A)(∃y ∈ B)(∀z ∈ A)(x + y + z is prime)

This is false; Choose x = 1 (x = 2 and x = 8 can also work), and for the
following values of y, the listed values of z make x + y + z not prime:

y z
0 8
4 1
5 2,8
9 2,8
17 2,8

4 Use universal instantiation and rules of inference to show that the following
argument is valid.

(∀x ∈ A)(¬(x ∈ B))
(y ∈ A ∨ y ∈ C) ∧ (y ∈ B ∨ y ∈ C)

∴ y ∈ C

(∀x ∈ A)(¬(x ∈ B)) Premise
(∀x)((x ∈ A) → (¬(x ∈ B))) Logical equivalence
(y ∈ A) → (¬(y ∈ B)) Universal instantiation
(y ∈ A ∨ y ∈ C) ∧ (y ∈ B ∨ y ∈ C) Premise
(y ∈ B) ∨ (y ∈ C) Specialisation
(¬(y ∈ B)) → (y ∈ C) Logical equivalence
(y ∈ A) → (y ∈ C) Transitivity from 3 & 6
(y ∈ C) → (y ∈ C) Tautology
(y ∈ A) ∨ (y ∈ C) Specialisation from 4
y ∈ C Division into cases
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5 Prove or disprove the following. You may use results proved in the course
or the homework sheets, provided you state them clearly.

(a) There is a natural number n such that n2 + 5n− 6 is prime.

This is false.

Proof. n2 + 5n − 6 = (n + 6)(n − 1), so if neither n + 6 nor n − 1 is ±1,
then n2 +5n− 6 is composite. If n+6 = 1, then n− 1 = −6, which is not
prime; if n + 6 = −1, then n − 1 = −8, which is not prime; if n − 1 = 1,
then n + 6 = 8, which is not prime; finally if n− 1 = −1, then n + 6 = 6,
which is not prime.

(b) 219 + 38 + 784 is divisible by 5.

This is true. 22 ≡ 4 (mod 5), 24 ≡ 42 ≡ 1 (mod ()5), so 216 ≡ 14 ≡
1 (mod 5), so 219 ≡ 23 ≡ 3 (mod 5). 32 ≡ 4 (mod 5), so 34 ≡ 1 (mod 5), so
38 ≡ 1 (mod 5). Finally, 7 ≡ 2 (mod 5), so 784 ≡ 284 ≡ 121 ≡ 1 (mod 5).
Therefore, 219 + 38 + 784 ≡ 3 + 1 + 1 ≡ 0 (mod 5). Thus 219 + 38 + 784 is
divisible by 5.

6 Find 0 6 n < 770 satisfying all the following congruences:

n ≡ 4 (mod 11) (1)
n ≡ 2 (mod 14) (2)
n ≡ 3 (mod 5) (3)

For the first two congruences:

n ≡ 4 (mod 11)
n ≡ 2 (mod 14)

We observe that 4× 14− 5× 11 = 1, so 4× 14 ≡ 1 (mod 11). n = 2 + 14k
for some integer k, from the second congruence. Therefore, 2 + 14k ≡
4 (mod 11), so 14k ≡ 2 (mod 11), which gives k ≡ 4× 2 = 8 (mod 11), so
n ≡ 2 + 14 × 8 ≡ 114 (mod ()11 × 14 = 154) is the solution to the first
two congruences.

Now we need to solve:

n ≡ 114 (mod 154) (4)
n ≡ 3 (mod 5) (5)
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This gives n = 114+154k ≡ 4+4k (mod 5), so 4+4k ≡ 3 (mod 5), which
gives k ≡ 1 (mod 5), so n = 114 + 154 = 268 is a solution.

7 Solve the following recurrence relations:

(a) an = an−1 + 2an−2, a0 = 1, a1 = 3.

This is a second-order homogeneous constant-coefficient linear recurrence,
so we look for solutions of the form an = tn. This gives the equation
t2 = t + 2, so t = 2 and t = −1 are solutions. The general solution is
therefore of the form an = A2n +B(−1)n. To find A and B, we substitute
the values of a0 and a1, to get:

A + B = 1 (6)
2A−B = 3 (7)

This gives A = 4
3 , B = − 1

3 , so the general solution is an = 2n+2+(−1)n+1

3 .

(b) an = 6an−1 − 9an−2, a0 = 0, a1 = 4.

This is a second-order homogeneous constant-coefficient linear recurrence,
so we look for solutions of the form an = tn for some t. We get the
equation t2 = 6t − 9, which gives t = 3 as a double solution. Therefore,
an = 3n and an = n3n both satisfy the recurrence, so the general solution
is an = (An + B)3n. We substitute the values for a0 and a1 to get B = 0,
and 3A = 4, so the solution is an = 4n3n−1.

(c) an = 2an−1 + 3, a0 = 3.

We start by looking at the first few values for an:

n an

0 3
1 9
2 21
3 45

This suggests an = 3(2n+1 − 1) is the general formula. We check this by
induction. For n = 0, we have already checked that the formula works.
Suppose it works for n, i.e. an = 3(2n+1 − 1), we want to show that
an+1 = (2n+2−1). By the recurrence relation, an+1 = 2an +3 = 6(2n+1−
1)+3 = 3(2n+2−2+1) = 3(2n+2−1) as required. Therefore, by induction,
the formula works for all n.

8 Show by induction on n that if A is a set of n elements, then its power set
P(A) has 2n elements. [Hint: let a ∈ A, and consider P(A) as the union
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of the set of subsets of A that contain a, and the set of subsets of A that
don’t contain a.]

Proof. When n = 0, A is the empty set ∅, so its power set has just one
element, ∅, so the result holds. Now suppose that the result holds for n,
and suppose that A is a set with n+1 elements. Let a ∈ A. Then A \ {a}
is a set with n elements, so by our induction hypothesis, P(A \ {a}) has
2n elements. If A′ is a subset of A, then either x ∈ A′, in which case
A′ \ {a} ⊆ A \ {a}, or x 6∈ A′, in which case A′ ⊆ A \ {a}. On the other
hand, if X ⊆ A \ {a}, then X and X \ {a} are both subsets of A, so there
are 2n subsets of A that contain a, and 2n that don’t contain a. Therefore,
there are a total of 2n+1 subsets of a (there are no subsets of A that both
contain a and don’t contain a). Therefore, the result holds for all n ∈ N
by induction.

9 Let A = {0, 1, 3, 7}, B = {1, 2, 7, 8}. What are:

(i) A ∪B?

A ∪B = {0, 1, 2, 3, 7, 8}

(ii) A ∩B?

A ∩B = {1, 7}

(iii) A×B?

A×B = {(0, 1), (0, 2), (0, 7), (0, 8), (1, 1), (1, 2), (1, 7), (1, 8), (3, 1), (3, 2), (3, 7), (3, 8),
(7, 1), (7, 2), (7, 7), (7, 8)}

(iv) B \A?

B \A = {2, 8}

10 Let A, B, and C be sets such that |A| = 7, |B| = 9, |C| = 17, |A∩B| = 4,
|A ∩ C| = 3, |B ∩ C| = 7, and |A ∪ B ∪ C| = 21. What are the possible
values for |A ∩B ∩ C|?

By the inclusion-exclusion principle, |A ∪B ∪C| = |A|+ |B|+ |C| − |A ∩
B|−|A∩C|−|B∩C|+|A∩B∩C|, so 21 = 7+9+17−4−3−7+|A∩B∩C|,
so |A ∩B ∩ C| = 2.
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11 For each of the following relations, determine which of the properties:
reflexivity, symmetry, transitivity, and antisymmetry hold:

(a) The relation R on the set of all sets given by A R B if and only if
∅ ∈ A ∧ ∅ ∈ B.

This is not reflexive, since if ∅ 6∈ A, then A is not related to A. It is
symmetric, since if ∅ ∈ A ∧ ∅ ∈ B, then ∅ ∈ B ∧ ∅ ∈ A. It is not
antisymmetric, since for example, if A = {∅}, and B = {1, ∅}, then A R B
and B R A, but A 6= B. Finally, it is transitive, since if A R B, and
B R C, then by specialisation, we get ∅ ∈ A, and ∅ ∈ C, so by conjunction
we get ∅ ∈ A ∧ ∅ ∈ C, so A R C.

(b) The relation R on the set of natural numbers given by n R m if and
only if n|m.

This is reflexive, since for any n ∈ N, n = 1×n, so n|n. It is not symmetric,
for example, 2|4, but 4 does not divide 2. It is antisymmetric, since if m|n
and n|m, then there are natural numbers k and l such that n = km and
m = ln, so m = klm, so either m = 0, in which case n = m, or kl = 1,
which means that k = l = 1, so n = m. It is transitive, by transitivity of
divisibility.

(c) The relation R on the set of all natural numbers given by m R n if
and only if m is odd and n is even.

This is not reflexive, since there are natural numbers which are not both
odd and even – any natural number provides a counterexample. It is
not symmetric, since for example, 1 R 2, but 2 is not related to 1. It is
antisymmetric, since if m R n, then n is even, so it is not odd, so n is not
related to any natural number, so in particular, it is not related to m. It
is also transitive, since the conditions m R n and n R l can never both
hold.

(d) The relation R on the set of positive rational numbers given by q R r
if q = a

b , r = c
d with (a, b) = (c, d) = 1, a, b, c, d ∈ Z+ and ad < b.

This is not reflexive, since, for example, if q = 1
2 , then q is not related to

itself, since 1 × 2 > 2. It is not symmetric. For example, if q = 1
7 , and

r = 3
4 , then q R r, but r is not related to q. It is antisymmetric, since if

a
b R c

d R a
b , where (a, b) = (c, d) = 1, then ad < b 6 bc < d, which can’t

happen, since a > 1.
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12 (a) Which of the following functions are injective? (b) Which are surjec-
tive?

(i) f : R+ → R+, f(x) = x2.

f is injective, since if x2 = y2, then x2 − y2 = 0, so (x + y)(x − y) = 0,
giving x = y or x = −y. x = −y is impossible, since x and y are both
positive, so x = y. f is surjective, since for any y ∈ R+, f(

√
y) = y.

(ii) f : R → R, f(x) = x2.

f is not injective, since for example, f(−1) = 1 = f(1). f is not surjective
since there is no x ∈ R such that x2 = −1.

(iii) f : N → {0, 1}, f(n) =
{

0 if n is prime
1 otherwise .

f is not injective, since f(2) = f(3) = 0. f is surjective, since f(1) = 1
and f(2) = 0.

(iv) f : Q → R, f(x) = 2x.

f is injective, since if f(x) = f(y), then 2x = 2y, so x = y. f is not
surjective, since for example, there is no rational number q with 2q =

√
2

(since
√

2
2 is irrational).

13 Show by strong induction that every positive integer congruent to 2 modulo
3 is divisible by a (positive) prime number congruent to 2 modulo 3.

Proof. The result holds for 2, since 2 is prime. Now suppose that every
n ≡ 2 (mod 3) with n < N for some N ≡ 2 (mod 3) is divisible by a
prime p ≡ 2 (mod 3). We want to show that N is divisible by a prime
p ≡ 2 (mod 3). If N is prime, then it is divisible by itself. If not, then
N = ab for 1 < a, b < N . If a and b are both congruent to either 0
or 1 modulo 3, then N would also be congruent to 0 or 1. Therefore,
at least one of a and b must be congruent to 2 modulo 3. W.L.O.G. let
a ≡ 2 (mod 3). Since a < N , by our induction hypothesis, a is divisible
by a prime p ≡ 2 (mod 3), so p|N , and the result holds for N . Therefore,
by strong induction, it holds for all n ∈ N.

14 Show that it is not possible to write a computer program which takes as
input a computer program P , and some value X, and determines whether
the programs P eventually finishes when given input X.

7



Proof. Suppose we have a computer program H which inputs a computer
program P and a value X, and determines whether P finishes with input
X. We can use it to write a program Q that inputs a program P , deter-
mines whether P finishes when it’s input is P (i.e. runs H(P, P ) and looks
at the output) and if P does terminate with input P , Q starts an infinite
loop (so it never terminates), while if P does not terminate with input
P , Q terminates. Now consider what happens when Q is run with input
Q. In order to terminate, it must determine that Q does not terminate
when given Q as input, in which case it can’t terminate. On the other
hand, if it doesn’t terminate, then H(Q,Q) will determine that it doesn’t
terminate, so Q terminate once H does. This is a contradiction, so our
assumption that the program H exists must be false, and there can be no
such program.

15 Consider the following algorithm, called a bubble sort for sorting a list
a[1], a[2], . . . , a[n] of length n.

Algorithm 1 Bubble Sort
Input: List a[1], a[2], . . . , a[n]
Output: Sorted list a[1], a[2], . . . , a[n]

numSwaps=1
while numSwaps>0 do

numSwaps=0
for i=1 to n-1 do

Compare a[i] to a[i + 1]
if a[i] > a[i + 1] then

swap a[i] and a[i+1]
numSwaps=numSwaps+1

end if
end for

end while

How many comparisons does it make to sort a list of length n: (Give your
answers in the form Θ(f(n)) for some function f), justify your answers.

(a) In the best case?

Each iteration of the outer loop performs n−1 comparisons, so the question
is how many times is the outer loop iterated? It runs until no swaps were
required. If the list is initially sorted, then no swaps will be required on
the first iteration of the outer loop, so the loop will only be iterated once.
Therefore, only n− 1 = Θ(n) comparisons will be performed.

(b) In the worst case? [Hint: Every time the outer loop runs, we know
that for every i < n, there is at least one more j > i with a[j] > a[i].]
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If the outer loop has been iterated k times for some natural number k,
then for any i 6 n−k, there must be at least k elements a[j] of the current
list with i < j and a[i] < a[j]. We can prove this by induction on k: if
k = 0, the result is trivially true. Suppose the result is true for one value
of k. We want to show that when we run the loop one more time, there
will be at least k + 1 elements a[j] such that j > i and a[j] > a[i]. The
element that ends up in the ith position after the (k+1)th iteration of the
loop must be smaller than the element that was in the (i + 1)th position
after k iterations. This element is, by the inductive hypothesis, smaller
than k of the a[j] with j > i + 1, so these k elements are also bigger than
a[i], and after the (k + 1)th iteration, they are still after a[i] in the list, so
the result holds for k + 1, so by induction, it holds for all k.

Therefore, after n − 1 iterations, the list will be sorted, so no swaps will
be made on the nth iteration, so the program will finish after at most n
iterations of the outer loop. Therefore, it performs a total of n(n − 1) =
Θ(n2) comparisons.

16 Define the function F : N → N recursively by:

F (n) =
{

4F
(

n
2

)
if n is even.

F (n− 1) + 2n− 1 if n is odd

and F (0) = 0.

Find a formula for F (n), and prove it.

We start by looking at the first few values of F (n):

n F (n)
0 0
1 1
2 4
3 9

This leads us to conjecture that F (n) = n2. We prove this by strong
induction:

Proof. We have already checked that the formula works for n = 0. Now
suppose it holds for all natural numbers n < k (k > 0). We need to show
that it also holds for n = k. If k is even then F (k) = 4F

(
k
2

)
= 4

(
k
2

)2
= k2,

so the result holds. If k is odd then F (k) = F (k−1)+2k−1 = (k−1)2 +
2k− 1 = k2, so the result holds for n = k. Thus by induction, it holds for
all n.

17 Given a set X of 10 natural numbers {n1, . . . , n10}, for a non-empty subset
X ′ of X, define SX′ =

∑
i∈X′ ni. show that there are two non-empty

subsets X0 and X1 of X such that SX0 ≡ SX1 (mod 1000).
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Proof. Since X has 10 elements, it has 210 = 1024 subsets. 1023 of
these are non-empty. On the other hand, SX′ can only take 1000 val-
ues modulo 1000, so some two non-empty subsets X0 and X1 must have
SX0 ≡ SX1 (mod 1000) by the pigeon-hole principle.
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