
I don’t think I presented the proof of the unique prime factorisation theorem
very well in the lectures, so I’ve written it out more clearly (hopefully) here.

Theorem 1 (Unique prime factorisation theorem). Any positive integer n can
be expressed uniquely as a product of prime numbers.

Proof. Existence: Strong induction on n: when n = 1, n can be expressed as
an empty product of prime numbers.

Now suppose that every m < n can be expressed as a product of prime
numbers. Either n is prime, or it can be written as n = ab where a > 2 and
b > 2 are positive integers. In the first case, n can be written as the product of
one prime – n = n. In the second case, since a > 1, b < ab = n, and similarly,
a < n, so by our induction hypothesis, a and b can be expressed as products
of prime numbers. Suppose a = pα1

1 · · · pαk

k and b = qβ1
1 · · · qβl

l . Then n has a
prime factorisation n = pα1

1 · · · pαk

k qβ1
1 · · · qβl

l .
Therefore, by strong induction, every positive integer can be expressed as a

product of primes.
Uniqueness: For this we need the following lemma:

Lemma 1. For any prime number p, and any positive integers a and b, if p|ab,
then either p|a or p|b.

Proof. Suppose p|ab, but p does not divide a. We need to show that p|b. Since
p is prime, its only positive factors are p and 1. Therefore, since (p, a) divides
p, it must be 1 or p. However, (p, a) must also divide a, so it cannot be p.
Therefore, it must be 1. Using Euclid’s algorithm, we can find integers x and y
such that px + ay = 1. Therefore, pxb + aby = b. However, p divides both pxb
and aby, so it divides their sum, which is b.

We can extend this to arbitrary products by induction:

Lemma 2. For any prime number p, and any collection of positive integers
a1, . . . , an such that p|a1 · · · an, there is some i such that p|ai.

Proof. Induction on n. If n = 0, p won’t divide the product, since the empty
product is 1. If n = 1, then the result is trivial – it just says that if p|a1, then
p|a1.

Now suppose the lemma holds for some value of n. We want to show that
whenever p|a1 · · · an+1, we must have p|ai for some 1 6 i 6 n + 1. Using
the previous lemma, we note that since p|(a1 · · · an)an+1, we must have either
p|a1 · · · an, or p|an+1. In the first case, by our induction hypothesis, p must
divide one of a1, . . . , an, so in either case, p must divide one of a1, . . . , an+1.

Now we can prove uniqueness by strong induction on n. When n = 1, it is
clear, because if there are any primes in the product, then it will be more than
1, so only the empty product of primes can equal 1.

Now suppose that for every m < n, the prime factorisation of m is unique up
to order of multiplication, and suppose that we have two prime factorisations
n = p1 · · · pk and n = q1 · · · ql (where some pi and qi may be repeated). By the
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above lemma, p1 must divide one of q1, . . . , ql, since it divides their product.
However, since q1, . . . , ql are all prime, if p1|qi, we must have p1 = qi (since
p1 6= 1). Now let m = n

p1
. We have m = p2 · · · pk, and m = q1 · · · qi−1qi+1 · · · ql.

Since p1 > 1, m < n, so by our induction hypothesis, the prime factorisation
of m is unique. Therefore, p2, . . . , pk must be q1, . . . , qi−1, qi+1, . . . , ql in some
order. This means that the two factorisations of n must be the same up to the
order of the factors.
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