I don't think I presented the proof of the unique prime factorisation theorem very well in the lectures, so I've written it out more clearly (hopefully) here.

Theorem 1 (Unique prime factorisation theorem). Any positive integer n can be expressed uniquely as a product of prime numbers.

Proof. Existence: Strong induction on n : when $n=1, n$ can be expressed as an empty product of prime numbers.

Now suppose that every $m<n$ can be expressed as a product of prime numbers. Either n is prime, or it can be written as $n=a b$ where $a \geqslant 2$ and $b \geqslant 2$ are positive integers. In the first case, n can be written as the product of one prime $-n=n$. In the second case, since $a>1, b<a b=n$, and similarly, $a<n$, so by our induction hypothesis, a and b can be expressed as products of prime numbers. Suppose $a=p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}$ and $b=q_{1}^{\beta_{1}} \cdots q_{l}^{\beta_{l}}$. Then n has a prime factorisation $n=p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}} q_{1}^{\beta_{1}} \cdots q_{l}^{\beta_{l}}$.

Therefore, by strong induction, every positive integer can be expressed as a product of primes.

Uniqueness: For this we need the following lemma:
Lemma 1. For any prime number p, and any positive integers a and b, if $p \mid a b$, then either $p \mid a$ or $p \mid b$.

Proof. Suppose $p \mid a b$, but p does not divide a. We need to show that $p \mid b$. Since p is prime, its only positive factors are p and 1 . Therefore, since (p, a) divides p, it must be 1 or p. However, (p, a) must also divide a, so it cannot be p. Therefore, it must be 1. Using Euclid's algorithm, we can find integers x and y such that $p x+a y=1$. Therefore, $p x b+a b y=b$. However, p divides both $p x b$ and $a b y$, so it divides their sum, which is b.

We can extend this to arbitrary products by induction:
Lemma 2. For any prime number p, and any collection of positive integers a_{1}, \ldots, a_{n} such that $p \mid a_{1} \cdots a_{n}$, there is some i such that $p \mid a_{i}$.

Proof. Induction on n. If $n=0, p$ won't divide the product, since the empty product is 1 . If $n=1$, then the result is trivial - it just says that if $p \mid a_{1}$, then $p \mid a_{1}$.

Now suppose the lemma holds for some value of n. We want to show that whenever $p \mid a_{1} \cdots a_{n+1}$, we must have $p \mid a_{i}$ for some $1 \leqslant i \leqslant n+1$. Using the previous lemma, we note that since $p \mid\left(a_{1} \cdots a_{n}\right) a_{n+1}$, we must have either $p \mid a_{1} \cdots a_{n}$, or $p \mid a_{n+1}$. In the first case, by our induction hypothesis, p must divide one of a_{1}, \ldots, a_{n}, so in either case, p must divide one of a_{1}, \ldots, a_{n+1}.

Now we can prove uniqueness by strong induction on n. When $n=1$, it is clear, because if there are any primes in the product, then it will be more than 1 , so only the empty product of primes can equal 1.

Now suppose that for every $m<n$, the prime factorisation of m is unique up to order of multiplication, and suppose that we have two prime factorisations $n=p_{1} \cdots p_{k}$ and $n=q_{1} \cdots q_{l}$ (where some p_{i} and q_{i} may be repeated). By the
above lemma, p_{1} must divide one of q_{1}, \ldots, q_{l}, since it divides their product. However, since q_{1}, \ldots, q_{l} are all prime, if $p_{1} \mid q_{i}$, we must have $p_{1}=q_{i}$ (since $\left.p_{1} \neq 1\right)$. Now let $m=\frac{n}{p_{1}}$. We have $m=p_{2} \cdots p_{k}$, and $m=q_{1} \cdots q_{i-1} q_{i+1} \cdots q_{l}$. Since $p_{1}>1, m<n$, so by our induction hypothesis, the prime factorisation of m is unique. Therefore, p_{2}, \ldots, p_{k} must be $q_{1}, \ldots, q_{i-1}, q_{i+1}, \ldots, q_{l}$ in some order. This means that the two factorisations of n must be the same up to the order of the factors.

